Forecasting Total Flights in Thailand Using FBprophet and Neural-Prophet in the Post-COVID 19 Period

Main Article Content

PIMPISA CHANTED

Abstract

Tourism industry and Aviation and Logistics industries are the lucrative industry that bring in millions of baht for the Thailand. However, since the start of the COVID 19 pandemic in late 2019, many countries took intensive control the outbreak and one of them was strictly Lock Down. Then, Thailand began suspending all passenger flights in March 2020. Later in the year 2021, many countries began to return to a new way of life or New Normal. The Tourism industry, as well as the Aviation and Logistics industries, started to recover. This study aims to forecast the number of flights both arriving and departing from Thailand after the pandemic of COVID 19 to predict economic growth using FBprophet and Neural-Prophet. The outcomes of the forecast indicate that the growth of the aviation industry is anticipated to be very faster than it happened before the COVID 19 pandemic. Consequently, organizations in both the public and private sectors should devise the strategic plan to mitigate the impact. Moreover, it can be found that FBprophet and Neural-Prophet can predict similar trend of the increasing growth of the aviation industry. Additionally, FBprophet presents the predicted results more accuracy and reasonable regarding the seasonal effects.

Article Details

How to Cite
CHANTED, P. (2023). Forecasting Total Flights in Thailand Using FBprophet and Neural-Prophet in the Post-COVID 19 Period. Journal of Research and Development Buriram Rajabhat University, 18(1), 35–46. retrieved from https://so03.tci-thaijo.org/index.php/RDIBRU/article/view/265654
Section
Research Articles

References

EEC. (2022). 10 อุตสาหกรรมเป้าหมาย กลไกขับเคลื่อนเศรษฐกิจเพื่ออนาคต (NEW ENGINE OF GROWTH). เข้าถึงได้จาก: http://eec.vec.go.th › เกี่ยวกับ-EEC. ค้นข้อมูล 1 ธันวาคม 2565.

บริษัท ท่าอากาศยานไทย จำกัด (มหาชน). (2022). สถิติขนส่งทางอากาศ. เข้าถึงได้จาก: https://www.airportthai.co.th/. ค้นข้อมูล 1 ธันวาคม 2565.

Bouwer, J., Krishnan, V., Saxon, S. & Tufft, C. (2022). Taking stock of the pandemic’s impact on global aviation. เข้าถึงได้จาก: https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/taking-stock-of-the-pandemics-impact-on-global-aviation. ค้นข้อมูล 1 ธันวาคม 2565.

Patandung, S., & Jatnika, I. (2021). The FB Prophet Model Application to the Growth Prediction of International Tourists in Indonesia during the COVID-19 Pandemic. International Research Journal of Advanced Engineering and Science. 6, pp. 110-115.

Anggreini, F. H. (2021). Forecasting the Number of International Travelers Visiting Bali during the Covid-19 Pandemic using the FBProphet Method. World Wide Journal of Multidisciplinary Research and Development. 7(7). pp. 56-60.

Pontoh, R. S., Zahroh, S., Nurahman, H. R., Aprillion, R. I., Ramdani, A., & Akmal, D. I. (2021). Applied of feed-forward neural network and facebook prophet model for train passengers forecasting. Journal of physics: Conference series. 1776(1), 012057.

Khurana S, Sharma G, Miglani N, Singh A, Alharbi A, Alosaimi W, Alyami H,& Goyal, N. (2022). An intelligent fine-tuned forecasting technique for covid-19 prediction using neuralprophet model. Computers, Materials and Continua. 71(1). 629-649.

Marappan, R., Bhaskaran, S., Aakaash, N., & Mitha, S. M. (2022). Analysis of COVID-19 Prediction Models: Design & Analysis of New Machine Learning Approach. Journal of Applied Mathematics and Computation. 6(1), pp. 121-126.

Chikkakrishna, N. K., Rachakonda, P., & Tallam, T. (2022). Short-Term Traffic Prediction Using Fb-PROPHET and Neural-PROPHET. Proceedings of 2022 IEEE Delhi Section Conference (DELCO).

Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician. 72(1). pp. 37-45.

Triebe, O., Hewamalage, H., Pilyugina, P., Laptev, N., Bergmeir, C., & Rajagopal, R. (2021). Neuralprophet: Explainable forecasting at scale. arXiv preprint arXiv:2111.15397.