Forecasting Optimal Chicken Feed Demand: A Case Study of Aun Reun Farm Co., Ltd.
DOI:
https://doi.org/10.14456/ajmt.2024.3Keywords:
Forecast, Chicken Catching Day, Chicken FeedAbstract
This research aimed to determine the optimal forecasting values for three types of chicken feed and predict the duration of the chicken catching period by applying four forecasting methods: 1) Moving Average, 2) Single Exponential Smoothing, 3) Linear Trend Equations Method, and 4) Quadratic Trend Equations Method. The data analysis in this study was performed using the Minitab 18 software package. The obtained data were tested to identify the most suitable forecasting method based on the following comparison criteria: Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) with the lowest values. The findings revealed that the Quadratic Trend Equations Method was the most appropriate forecasting method for feed types 511 and 513, as well as for determining the chicken catching period. This method provided an average accuracy of 98.21% when compared to the actual feed consumption in the 10th batch. However, regarding feed type 510, the Single Exponential Smoothing method was found to be the most suitable, with an accuracy of 92.99% when compared to the actual feed consumption in the 10th batch. Among all the forecasting methods employed in this study, it was observed that the majority of the data with the lowest error values were obtained using the Quadratic Trend Equations Method.
References
Atiprayoon, N., Thongthirapap, A., & Chaipitak, S. (2020). Comparison of forecasting methods for time series with non-linear and non-stationary characteristics. Journal of Science and Technology, 28(2), 197-207.
Bureau of Commodity Trade Department of International Trade Negotiations. (2022). Chicken meat and products. https://www.dtn.go.th/th/file/get/file/1.20220401b13d85e0b079b00bffc227a7e327b460091515.pdf
Kasaraphong, P., Klanngen, C., Luesak, K., & Chaisuwan, T. (2023). Controlling the medical supply inventory by determining the appropriate amount of medical supply disbursement according to the annual budget using a spreadsheet, case study of Subdistrict Health Promoting Hospital. UTK Rajamangala University of Technology Krungthep Research Journal. 17(1), 79-90
Klanngen, C., Kesarapong, P., & Klansakasom, S. (2022). Development of a computer program to control raw material inventory for the automotive part forming industry: a case study. In Megatrends Drive the Economy through Innovation for Thai Industry. The 7th Rajamangala Conference on Production Technology and Management (pp. 320-326).
Kokanutaporn, K. (2020). Comparative study of appropriate models for forecasting the number of water users of the Provincial Waterworks Authority Pathum Thani branch. Journal of Science and Technology (Science Technology), 29(1), 36-45.
Kositanon, R. (2021). Demand forecasting and inventory management case study of air purifier factory. [Unpublished Master' s Thesis]. Burapha University.
Muenthaisong, K., & Raksong, S. (2021). The impact of volatility of maize price on chicken Production supply in Thailand. RRU Community Research Journal, 15(3), 116-130.
Phichit Provincial Livestock Office. (2023). Important economic animals in Phichit Province.
https://www.opsmoac.go.th/phichit-dwl-files-451491791997
Riansut, W. (2019). Selection of the appropriate forecasting models for the meat type chickens prices. Journal of KKU Science, 47(3), 563-575.
Sermphongphan, C. (2017). Forecasting demand for cement in Thailand. [Unpublished Master' s Thesis]. Thammasat University.
Siam Commercial Bank. (2023). The Thai broiler industry in 2023 is likely to continue growing due to factors supporting the demand for chicken meat consumption. Both from the domestic market and the export market that has improved, according to the gradual recovery of the economy. https://www.scbeic.com/th/detail/file/product/9021/gl92urwtdp/Industry-Insight_Chicken_20230524.pdf
Sukseksan, N. (2019). Forecasting chicken feed quantity by applying linear regression equations. A case study of a chicken farm in Prachinburi Province. Thammasat Engineering Journal, 5(1), 5-10.
Sutthison, T.( 2023). Hybrid model for forecasting monthly price of Maize in Thailand. Burapha Science Journal, 28(1), 155-174.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 คณะเทคโนโลยีการจัดการ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสุรินทร์

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะเทคโนโลยีการจัดการ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสุรินทร์
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้ เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับคณะเทคโนโลยีการจัดการ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสุรินทร์ และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว





