The Development of The Working Memory Boardgame in Accordance with The Multi-component Model in Child and Adolescent

Main Article Content

Nattaporn Opasanon
Suradate Prayoonsak

Abstract

Objectives: This research aims 1) to conduct a pilot study for a board game “the zoo,” which has been developed to measure the working memory in children and adolescents following the multi-component model and 2) examine its relationship with a standardized working memory assessment (digit span task). Materials and methods: Five experts evaluated the content validity of the boardgame and played by sixty-four primary and secondary school students in the province of Phitsanulok, Thailand, while individually assessing the Digit Span Task. Results: The board game conforms to the multi-model component. Moreover, there was an absence of any statistically significant relationship between the board game and the total score of the Digit Span Task (r = .076): the digit span forward (r = .067) and Digit Span Backward (r= .046). Conclusion: Although in line with the multi-component model, the board game shows no statistically significant correlation with the digit span task. Further studies should be focused on investigating the boardgame properties and the measurement results which reflect from this boardgame.

Article Details

How to Cite
Opasanon, N., & Prayoonsak, S. (2022). The Development of The Working Memory Boardgame in Accordance with The Multi-component Model in Child and Adolescent. Thai Journal of Clinical Psychology (Online), 53(2), 49–63. retrieved from https://so03.tci-thaijo.org/index.php/tci-thaijclinicpsy/article/view/256470
Section
Original article

References

Abrahamse, E. L., van Dijck, J. P., & Fias, W. (2017). Grounding Verbal Working Memory: The Case of Serial Order. Current Directions in Psychological Science, 26(5), 429–433. https://doi.org/10.1177/0963721417704404

Arnott, S. R., Grady, C. L., Hevenor, S. J., Graham, S., & Alain, C. (2005). The Functional Organization of Auditory Working Memory as Revealed by fMRI. Journal of Cognitive Neuroscience, 17(5), 819-831. https://doi.org/10.1162/0898929053747612

Baddeley, A. (1992). Working memory. Science, 255 (5044), 556-559. https://doi.org/10.1126/science.1736359

Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. https://doi.org/10.1016/s1364-6613(00)01538-2

Baddeley, A. (2007). Working Memory, Thought, and Action (Oxford Psychology Series, 45) (Illustrated ed.). Oxford University Press.

Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1-29. https://doi.org/10.1146/annurev-psych-120710-100422

Banich, M. T. (2009). Executive function. Current Directions in Psychological Science, 18(2), 89-94. https://doi.org/10.1111/j.1467-8721.2009.01615.x

Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118(2), 175-192. https://doi.org/10.1037/a0022324

Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2017). The effect of binaural beats on verbal working memory and cortical connectivity. Journal of Neural Engineering, 14(2), 026014. https://doi.org/10.1088/1741-2552/aa5d67

Cambridge Cognition Ltd. (2014). Cantab computerized cognitive tests. http://www.cambridgecognition.com/ technology

Cragg, L., & Nation, K. (2007). Self-ordered pointing as a test of working memory in typically developing children. Memory, 15(5), 526-535. https://doi.org/10.1080/09658210701390750

Dodd, M. D., & Shumborski, S. (2009). Examining the influence of action on spatial working memory: The importance of selection. Quarterly Journal of Experimental Psychology, 62(6), 1236-1247. https://doi.org/10.1080/17470210802439869

Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural Correlates of Verbal Working Memory: An fMRI Meta-Analysis. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00180

Feigenbaum, J. D., Polkey, C. E., & Morris, R. G. (1996). Deficits in spatial working memory after unilateral temporal lobectomy in man. Neuropsychologia, 34(3), 163–176. https://doi.org/10.1016/0028-3932(95)00107-7

Gathercole, S. E., & Hitch, G. J. (1993). Developmental changes in short-term memory: A revised working memory perspective. In A. F. Collins, S. E. Gathercole, M. A. Conway, & P. E. Morris (Eds.), Theories of memory (pp. 189-209). Lawrence Erlbaum Associates, Inc.

Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The Structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177-190. https://doi.org/10.1037/0012-1649.40.2.177

Groeger, J. A., Field, D., & Hammond, S. M. (1999). Measuring memory span. International Journal of Psychology, 34(5-6), 359-363. https://doi.org/10.1080/002075999399693

Gyselinck, V., Cornoldi, C., Dubois, V., de Beni, R., & Ehrlich, M. F. (2002). Visuospatial memory and phonological loop in learning from multimedia. Applied Cognitive Psychology, 16(6), 665-685. https://doi.org/10.1002/acp.823

Henry, L. A. (2010). The episodic buffer in children with intellectual disabilities: An exploratory study. Research in Developmental Disabilities, 31(6), 1609-1614. https://doi.org/10.1016/j.ridd.2010.04.025

Hilbert, S., Bühner, M., Sarubin, N., Koschutnig, K., Weiss, E., Papousek, I., Reishofer, G., Magg, M., & Fink, A. (2015). The influence of cognitive styles and strategies in the digit span backwards task: Effects on performance and neuronal activity. Personality and Individual Differences, 87, 242-247. https://doi.org/10.1016/j.paid.2015.08.012

Hoffnung, M. (2019). Life span development. (Fourth Australian edition). Wiley.

Meng, X., Murakami, T., & Hashiya, K. (2017). Phonological loop affects children’s interpretations of explicit but not ambiguous questions: Research on links between working memory and referent assignment. PLOS ONE, 12(10). https://doi.org/10.1371/journal.pone.0187368

Jalbrzikowski, M., Murty, V. P., Stan, P. L., Saifullan, J., Simmonds, D., Foran, W., & Luna, B. (2018). Differentiating between clinical and behavioral phenotypes in first-episode psychosis during maintenance of visuospatial working memory. Schizophrenia Research, 197, 357-364. https://doi.org/10.1016/j.schres.2017.11.012

Kessels, R. P. C., & Postma, A. (2017). The Box task: A tool to design experiments for assessing visuospatial working memory. Behavior Research Methods, 50(5), 1981-1987. https://doi.org/10.3758/s13428-017-0966-7

Leaffer, E. B., Fee, R. J., & Hinton, V. J. (2016). Digit span performance in children with dystrophinopathy: A verbal span or working memory contribution?. Journal of the International Neuropsychological Society, 22(7), 777-784. https://doi.org/10.1017/s1355617716000461

Monaco, M., Costa, A., Caltagirone, C., & Carlesimo, G. A. (2012). Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurological Sciences, 34(5), 749-754. https://doi.org/10.1007/s10072-012-1130-x

Nobre, A. D. P., Rodrigues, J. D. C., Sbicigo, J. B., Piccolo, L. D. R., Zortea, M., Junior, S. D., & de Salles, J. F. (2013). Tasks for assessment of the episodic buffer: A systematic review. Psychology & Neuroscience, 6(3), 331-343. https://doi.org/10.3922/j.psns.2013.3.10

Ramsay, M. C., & Reynolds, C. R. (1995). Separate digits tests: A brief history, a literature review, and a reexamination of the factor structure of the test of memory and learning (TOMAL). Neuropsychology Review, 5(3), 151-171. https://doi.org/10.1007/bf02214760

RepovS, G. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139(1), 5.

Rodriguez-Jimenez, R., Avila, C., Garcia-Navarro, C., Bagney, A., Aragon, A. M. D., Ventura-Campos, N., Martinez-Gras, I., Forn, C., Ponce, G., Rubio, G., Jimenez-Arriero, M. A., & Palomo, T. (2009). Differential dorsolateral prefrontal cortex activation during a verbal n-back task according to sensory modality. Behavioural Brain Research, 205(1), 299-302. https://doi.org/10.1016/j.bbr.2009.08.022

Sacchetti, E., Galluzzo, A., Panariello, A., Parrinello, G., & Cappa, S. F. (2008). Self-ordered pointing and visual conditional associative learning tasks in drug-free schizophrenia spectrum disorder patients. BMC Psychiatry, 8(1). https://doi.org/10.1186/1471-244x-8-6

Soto, D., & Humphreys, G. W. (2008). Stressing the mind: The effect of cognitive load and articulatory suppression on attentional guidance from working memory. Perception & Psychophysics, 70(5), 924-934. https://doi.org/10.3758/pp.70.5.924

van Ewijk, H., Heslenfeld, D. J., Luman, M., Rommelse, N. N., Hartman, C. A., Hoekstra, P., Franke, B., Buitelaar, J. K., & Oosterlaan, J. (2013). Visuospatial working memory in ADHD patients, unaffected siblings, and healthy controls. Journal of Attention Disorders, 18(4), 369-378. https://doi.org/10.1177/1087054713482582

Wang, W., Fan, L., Wang, Z., Liu, X., & Zhang, S. (2021). Effects of phonological loop on inferential processing during Chinese text reading: Evidence from a dual‐task paradigm. PsyCh Journal, 10(4), 521-533. https://doi.org/10.1002/pchj.451

Wechsler, D. (1991) Wecshler intelligence scale for children-third edition. The Psychological Corp.