The efficiency of a class attendance monitoring system with face recognition by using LBP technique

  • Suwat Banlue Faculty of Computer Science Ubon Ratchathani Rajabhat University
  • Khanittha Inthasaeng Inthasaeng Faculty of Computer Science Ubon Ratchathani Rajabhat University
Keywords: Image processing, face detection, face recognition

Abstract

The purposes of this research were 1) to design and develop a class attendance monitoring system with face recognition, 2) to study the efficiency of this developed class attendance monitoring system, and 3) to explore the users’ satisfaction of this developed class attendance monitoring system. The samples were 98 students who were enrolled in the “Computer and Digital Literacy” class in the semester 2/2018 at Ubon Ratchathani Rajabhat University. The research instruments were the developed class attendance monitoring system with face recognition and a user satisfaction assessment form. Statistics for data analysis included mean, standard deviation, and Chi-square. The results of the research were as follows: 1) The web application program was developed with PHP and OpenCV. The database system was MySQL. The developed program was consisted of 2 sub-programs. One program was to construct a student face image database and the other was to monitor class attendance through face images. 2) The appropriate efficiency of the developed class attendance monitoring system with face recognition was 0.30, which showed the best efficiency of 0.00. 3) The users’ satisfaction of the developed class attendance monitoring system was at 4.06 (high level) (S.D. = 0.16).

Downloads

Download data is not yet available.

References

เกรียงศักดิ์ ตรีประพิณ ภัคภัทร นาอุดม และไพชยนต์ คงไชย. (2561). การพัฒนาระบบตรวจสอบนักศึกษาเข้าเรียนด้วยวิธี

การรู้จำใบหน้า (Attendance monitoring system with face recognition technologies). วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี, 20(2), 92.

ณัศรุณ บินโหรน. (2556). การพัฒนาต้นแบบระบบบันทึกเวลาปฏิบัติงานโดยใช้โทรศัพท์สมาร์ทโฟน. วิทยานิพนธ์ วิทยาการสารสนเทศมหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ. นครราชศรีมา: มหาวิทยาลัยเทคโนโลยีสุรนารี.

วิวัฒน์ ทวีทรัพย์. (2555). การพัฒนาระบบบันทึกการเข้าร่วมกิจกรรม. วิทยานิพนธ์ วิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์. เชียงใหม่: มหาวิทยาลัยเชียงใหม่.

Ahonen, T., Hadid, A. and Pietikäinen M. (2006). Face Description with Local Binary Patterns: Application to

Face Recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 28(12),

-2041.

Arulogun, O.T., et al. (2013). RFID-based Students Attendance Management System. Journal of Scientific &

Engineering Research, 4(2), 1-9.

Jafri, R. and Arabnia, H.R. (2009). A survey of face recognition techniques. Journal of Information Processing Systems, 5(2), 41-68.

Likert, R. (1967). The Method of Constructing and Attitude Scale. In Reading in fishbeic, M (Ed.), Attitude

Theory and Measurement. New York: wiley & Son.

Liying, L. and Yue, H. (2008). The Study of Entrance Guard & Check on Work Attendance System Based on

Face Recognition. In Computer Science and Information Technology, 2008. ICCSIT'08.

International Conference. 44 – 47.

Masalha, F. and Nael H. (2014). A Students Attendance System Using QR Code. International Journal

of Advanced Computer Science and Applications, 5(3), 76.

Phankokkruad, M. and Jaturawat P. (2015). An Evaluation of Technical Study and Performance for Real-Time

Face Detection Using Web Real-Time Communication. In International Conference on Computer,

Communication and Control Technology, 2015. (I4CT 2015) International Conference. 162-166.

Roshan, J. G., et al. (2013). Smart Attendance using Real Time Face Recognition (SMART-FR). Department

of Electronic and Computer Engineering, Sri Lanka Institute of Information Technology (SLIIT),

Malabe, Sri Lanka.

Taxila, P. (2009). Development of Academic Attendance Monitoring System using Fingerprint Identification.

International Journal of Computer Science and Network Security (IJCSNS), 9(5), 164.

Viola, P. and Jones, M. (2001). “Rapid object detection using a Boosted cascade of simple features,

Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, (1), 1-9.

Published
2020-04-27
How to Cite
Banlue, S., & Inthasaeng, K. I. (2020). The efficiency of a class attendance monitoring system with face recognition by using LBP technique. Journal of Roi Et Rajabhat University, 14(1), 147-158. Retrieved from https://so03.tci-thaijo.org/index.php/reru/article/view/209353
Section
Research Articles