Inventory Management Efficiency Improvement: A Case Study of Retail Company

Inventory Management Efficiency Improvement: A Case Study of Retail Company

Authors

  • ปรางรวี พันธ์สังวาลย์
  • นันทิ สุทธิการนฤนัย
  • สราวุธ จันทร์ผง คณะวิศวกรรมศาสตร์ มหาวิทยาลัยรังสิต

Keywords:

การจัดการสินค้าคงคลัง การพยากรณ์ การกำหนดปริมาณการสั่งซื้อตามช่วงเวลา การกำหนดปริมาณการสั่งซื้อที่ประหยัด

Abstract

          This research aims to reduce the cost of cosmetic product inventory management of a retail company which is facing an oversupply of inventory, a shortage of some products, and high inventory management costs. The group of cosmetic product is selected as a model for improvement since it has the highest sales amount and highest inventory values during 2018-2020. The researcher proposed a solution through a 3-step process as follows: 1) Classifying group of products in order of importance, 2) Forecasting the demand for products, and 3) determining the appropriate order quantity. The results showed that
          1. The most important products are moisturizer for face and moisturizer for body as it has been classified using multi-criteria ABC analysis. Those criterions are sales value, days on hand of inventory, Percentage of shortages, and ordering lead time.
           2. Moving Average Forecasting, Weighted Moving Average, and Exponential Smoothing are suitable for forecasting different types of products, depends on which method produces the lowest forecast error.
          3. Periodic order quantity (POQ) creates a lower cost than Economic order quantity (EOQ) and is resulting in a reduction of total cost of inventory management by 2,176,050 baht, or a decrease of 5%. The total value of inventory of the cosmetics product group is also reduced by 1,255,230 baht, or a decrease of 2% of the total inventory value. The occurrence of shortages in the cosmetic product is also reduced by 1.58%

References

ปรียาณัฐ เอี๊ยบศิริเมธี, นันทิ สุทธิการนฤนัย และสราวุธ จันทร์ผง. (2016). การพยากรณ์ปริมาณความต้องการสัปปะรดกระป๋องของประเทศไทย ด้วยวิธีการพยากรณ์แบบดั้งเดิมกับวิธีโครงข่ายประสาทเทียม. วารสารวิทยาลัยนครราชสีมา สาขามนุษยศาสตร์และสังคมศาสตร์, 10(2) หน้า 9-21.

Agami, N. et al., (2009). A neural network based dynamic forecasting model for Trend Impact Analysis. Technological Forecasting and Social Change.76(7), pp.952–962.

Armstrong, J.S., (2001). Principles of Forecasting: A Handbook for Researchers and Practitioners, Springer.

Diana, Soumaya and Francisco, (2016). Inventory ABC Supervised Classification with Logical Analysis of Data. Industrial and Systems Engineering Research Conference (ISERC 2016), Anaheim. California, pp.130-234.

Fan Liu and Ning Ma (2020). Multicriteria ABC Inventory Classification Using Social Choice Theory. Sustainability. 12(1), pp.182.

Flores, B. E., and Whybark, D. C., (1987) . Implementing multiple criteria ABC analysis. Journal of Operations Management. 7(1), pp.79-85.

Gosasang, V. , Chandraprakaikul, W. & Kiattisin, S. , (2010) . An Application of Neural Networks for Forecasting Container Throughput at Bangkok Port. Proceedings of the World Congress on Engineering 2010, Vol.I, London, UK.

Hatefi, Torabi and Bagheri, (2013). Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria. International Journal of Production Research, pp.776-786.

Hippert, H.S. , Bunn, D.W. & Souza, R.C. , (2005) . Large neural networks for electricity load forecasting: Are they overfitted. International Journal of forecasting. 21(3), pp.425–434.

Hooshang, Dale and Faye, (2012). ABC Inventory Management Support System with a Clinical Laboratory Application. Journal of Promotion Management. 18(4): pp.414-435

Jain, C.L. , (2007) .Benchmarking forecasting models. Journal of Business Forecasting Methods and Systems. 26(4), p.15.

Maddala, G. S. & Lahiri, K. , ( 1992) . Introduction to econometrics. Available at: http://www.revecap.com/revista/numeros/03/pdf/raymond.pdf [Accessed April 29, 2021].

Makram Jeddou (2014). Multi-criteria ABC Inventory Classification – A Case of Vehicle Spare Parts Items. Journal of Advanced Management Science. 2(3), pp.181-185.

Makridakis, S., Wheelwright, S.C. & Hyndman, R.J., (2008). Forecasting methods and applications. Wiley-India.

Mohamed Douissa and Khaled Jabeur (2016). A New Model for Multi-criteria ABC Inventory Classification: PROAFTN Method. Procedia Computer Science. Vol. 96, pp.550-559.

Mohd, Quamrul, Santhirasegaran, and Kamaruddin, (2018) . A case study of inventory analysis in a healthcare product manufacturing company. International Journal of Supply Chain Management. pp.126-130

Patton, M. Q. & others, (1990) . Qualitative evaluation and research methods. Available at: http://digilib.bc.edu/reserves/sc794/leac/sc79402.pdf [Accessed April 29, 2021].

Sigit Adityawan and Nugraheni Fitri, (2014) . Comparative Study of EOQ and POQ Methods in Materials Inventory Cost Efficiency – A Case Study in Block Paving Company. Proceeding of 3rd International Conference on Sustainable Built Environment. Yogyakarta. Indonesia, October 21 – 22, 2014.

Tomislav, Katica, Danijela and Goran, (2014) . Inventory classification using multi –criteria abc analysis Neural networks and cluster analysis. Tehnicki Vjesnik (2014)(5), pp.1109-1115.

Vaneet and Sachin, (201) . ABC Analysis - A Case Study of Vehicle Spare Parts Based on Deccan Vehicles. Available at: https://www.ijite.com/citations/IJITE _1401518.pdf [Accessed April 29, 2021].

Weatherford, L.R. & Kimes, S.E., (2003). A comparison of forecasting methods for hotel revenue management. International Journal of Forecasting. 19(3) , pp.401–415.

Weisberg, S., (2005). Applied Linear Regression. John Wiley & Sons, p. xiii.

Wooldridge, J.M. , (2009). Introductory econometrics: A modern approach. SouthWestern.

Worapon, Watchariya, Pakapol, and Nanthawat, (2020). Application of ABC classification analysis technique for inventory management of food categories : A case study XYZ department store. Research and Development Institute. Rajamangala University of Technology Suvarnabhumi. 5(2), pp.153-166

Yadav, Virendra and Kirti, (2018). ABC ANALYSIS: A LITERATURE REVIEW. Available at: http://www.iaetsdjaras.org/gallery/14-may-741.pdf [Accessed April 29, 2021].

Yang, X., Xu, Z. & Shu, F., (2010). Analysis of the Regional Characteristics and Container Throughput Forecast Model of the Three Major Port Cities. Intelligent Computation Technology and Automation ICICTA. 2010 International Conference on, pp. 679–682.

Zeeshan Farrukh et al. (2015). A Simple Multi-criteria Inventory Classification Approach. Technical Journal, University of Engineering and Technology.Vol.20, pp 70-78.

Downloads

Published

2022-09-14

How to Cite

พันธ์สังวาลย์ ป., สุทธิการนฤนัย น., & จันทร์ผง ส. (2022). Inventory Management Efficiency Improvement: A Case Study of Retail Company: Inventory Management Efficiency Improvement: A Case Study of Retail Company. Journal of Nakhonratchasima college (Humanities and Social Sciences), 15(3), 391–405. retrieved from https://so03.tci-thaijo.org/index.php/hsjournalnmc/article/view/254723

Issue

Section

Research Article