Prediction of Achievement in Primary School Students Using Support Vector Machine Algorithm

Authors

  • Jutamart Tanyala Educational Innovation Research, Faculty of Education, Loei Rajabhat University, Loei 42000
  • Chaimongkhon Pinasa Educational Innovation Research, Faculty of Education, Loei Rajabhat University, Loei 42000
  • Anuphum Kumyoung Educational Innovation Research, Faculty of Education, Loei Rajabhat University, Loei 42000

Keywords:

Prediction, Achievement, Platform, Algorithm, Support Vector Machine

Abstract

This academic article focuses on the application of the Support Vector Machine (SVM) algorithm to predict the academic performance of Grade 6 students in the 2024 academic year. Artificial intelligence technology, specifically ChatGPT, was employed to simulate a dataset of 1,000 student records, based on real data collected from three schools in Loei Province, Thailand. The dataset included variables such as gender, grade point average (GPA), cumulative GPA, study hours, and academic status, while personal identifiers were excluded to ensure privacy. The data were divided into two sets: 70% for model training and 30% for testing to evaluate the model’s performance. The model development process consisted of five main stages: (1) data collection, (2) data preparation, (3) model construction, (4) performance evaluation using 10-fold cross-validation, and (5) implementation using Altair AI Studio Educational 2025.0.0. The results revealed that the SVM model demonstrated high levels of performance in terms of accuracy, precision, and recall, confirming its potential as a reliable tool for academic performance prediction. Additionally, the model was integrated into the One Compiler application, an online coding platform that supports HTML-based user interface design. This enabled users to input student data and conveniently receive predictive outcomes. The tool serves as a practical resource for school administrators, teachers, and stakeholders to enhance decision-making and improve the effectiveness of teaching and learning management.

References

นคร ละลอกน้ำ. (2561). การใช้เทคนิคการขุดข้อมูลทางการศึกษาเพื่อการศึกษา. วารสารการศึกษาและการพัฒนาสังคม, 14(2), 1-16.

ชัยมงคล ปินะสา, สำราญ มีแจ้ง และ น้ำทิพย์ องอาจวาณิชย์. (2567). การประยุกต์ใช้โครงข่ายประสาทเทียมในการคัดเลือกข้อสอบข้อถัดไป. วารสารวัดผล, 30(1), 1-15.

วีระพันธ์ พาณิชย์. (2564). การประยุกต์ใช้ Machine Learing ทำนายผลการเรียนวิชา Web Database ของนิสิตสาขาเทคโนโลยีการศึกษา คณะศึกษาศาตร์ มหาวิทยาลัยบูรพา. (วิทยานิพนธ์การศึกษาตามหลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์และโทรคมนาคม). กรุงเทพฯ: วิทยาลัยนวัตกรรมด้านเทคโนโลยีและวิศวกรรมศาสตร์มหาวิทยาลัยธุรกิจบัณฑิตย์.

สุรวีร์ เพียรเพชรเลิศ. (2566). การขุดข้อมูลทางการศึกษากับการประยุกต์ใช้ด้านการศึกษา. Journal of Modern Learning Development, 8(8), 492-502.

สำนักนายกรัฐมนตรี. (2545). พระราชบัญญัติการศึกษาแห่งชาติ พ.ศ.2542 และที่แก้ไขเพิ่มเติม (ฉบับที่ 2) พ.ศ.2545 สำนักนายกรัฐมนตรีประกาศในราชกิจจานเบกษา เล่มที่ 119 ตอนที่ 123ก วันที่ 19 ธันวาคม 2545. กรุงเทพฯ: พริกหวานกราฟฟิค.

Adekitan, A. I., & Noma-Osaghae, E. (2019). Data mining approach to predicting the performance of first year student in a university using the admission requirements. Education and Information Technologies, 24, 1527-1543. Form https://doi.org/10.1007/s10639-018-9839-7.

Adekitan, A. I., & Salau, O. (2019). The impact of engineering students' performance in the first three years on their graduation result using educational data mining. Heliyon, 5(2). Form https://doi.org/10.1016/j.heliyon.2019. e01250.

Ali, A., & Saleem, N. N. (2022). Classification of Software Systems attributes based on quality factors using linguistic knowledge and machine learning: A review. Journal of Education and Science, 31(3), 66.60-90.60. Form https://doi.org/10.33899/edusj.2022.134024.1245.

Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971. Form https://doi.org/10.1007/s10639-022-11152-y.

Bisri, A., Heryatun, Y., & Navira, A. (2025). Educational Data Mining Model Using Support Vector Machine for Student Academic Performance Evaluation. Journal of Education and Learning (EduLearn), 19(1), 478-486. Form https://doi.org/10.11591/edulearn.v19i1.21609.

Chen, Y., & Zhai, L. (2023). A comparative study on student performance prediction using machine learning. Education and Information Technologies, 28(9), 12039-12057. Form https://doi.org/10.1007/s10639-023-11672-1.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.

Fetatnia, A. (2024). A Comparative Study of Data Mining Tools. Form http://dspace.univ-guelma.dz/jspui/handle/123456789/16489.

Gu, Q., Zhu, L., & Cai, Z. (2009). Evaluation measures of the classification performance of imbalanced data sets. 2009 International Symposium on Intelligence Computation and Applications, Huangshi (461-471). Form https://doi.org/10.1007/978-3-642-04962-0_53.

H. Alamri, L., S. Almuslim, R., S. Alotibi, M. ,K. Alkadi, D., UllahKhan, I., Aslam,N., (2020). Predicting student academic performance using support vector machine and random forest. 2020 3rd International Conferenceon Education Technology Management (100–107). Form https://doi.org/10.1145/3446590.3446607.

Haryatmi, E., & Hervianti, S. P. (2021). Penerapan algoritma support vector machine untuk model prediksi kelulusan mahasiswa tepat waktu. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(2), 386-392. Form https://doi.org/10.29207/resti.v5i2.3007.

Kohavi, R. (1995). A Study of Cross-Validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence (IJCAI) (1137-1143). Morgan Kaufmann. Form https://www.researchgate.net/publication/2352264.

Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: an introduction to data mining. John Wiley & Sons.

Madyatmadja, E. D., Jordan, S. I., & Andry, J. F. (2021). Big data analysis using rapidminer studio to predict suicide rate in several countries. ICIC Express Letters, Part B: Applications, 12(8), 757-764. Form https://doi.org/10.24507/icicelb.12.08.757.

Mailana, A., Putra, A. A., Hidayat, S., & Wibowo, A. (2021). Comparison of C4. 5 algorithm and support vector machine in predicting the student graduation timeliness. Jurnal Online Informatika, 6(1), 11-16. Form https://doi.org/10.15575/join.v6i1.608.

Novianto, E., & Suhirman, S. (2024). Comparison of K-nearest neighbor classification methods and support vector machine in predicting students’ Sstudy period. Journal of Education and Science, 33(1), 32.30-45.30. Form https://doi.org/10.33899/edusj.2023.144865.1408.

Peng, J., Jury, E. C., Dönnes, P., & Ciurtin, C. (2021). Machine learning techniques for personalised medicine approaches in immune-mediated chronic inflammatory diseases: applications and challenges. Frontiers in pharmacology, 12, 720694. Form https://doi.org/10.3389/fphar.2021.720694.

Putri, R. P. S., & Waspada, I. (2018). Penerapan algoritma C4. 5 pada aplikasi prediksi kelulusan mahasiswa prodi informatika. Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, 4(1), 1-7. Form https://doi.org/10.23917/khif.v4i1.5975.

Ramageri, B. M. (2010). Data mining techniques and applications. Indian journal of computer science and engineering, 1(4), 301-305.

Rastrollo-Guerrero, J. L., Gómez-Pulido, J. A., & Durán-Domínguez, A. (2020). Analyzing and predicting students’ performance by means of machine learning: A review. Applied sciences, 10(3), 1042. Form https://doi.org/10.3390/app10031042.

Sathe, M. T., & Adamuthe, A. C. (2021). Comparative study of supervised algorithms for prediction of students’ performance. International Journal of Modern Education and Computer Science, 13(1), 1. Form https://doi.org/10.5815/ijmecs.2021.01.01.

Switrayana, I. N., Ashadi, D., Hairani, H., & Aminuddin, A. (2023). Sentiment analysis and topic modeling of Kitabisa applications using Support Vector Machine (SVM) and Smote-Tomek links methods. International Journal of Engineering and Computer Science Applications (IJECSA), 2(2), 87-98. Form https://doi.org/10.30812/ijecsa.v2i2.3406.

Tree, D. (2020). Klasifikasi mahasiswa her berbasis algoritma svm dan decision tree. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 7(6). Form https://doi.org/10.25126/jtiik.202073080.

Uska, M. Z., Wirasasmita, R. H., Usuluddin, U., & Arianti, B. D. D. (2020). Evaluation of rapidminer-aplication in data mining learning using persiva model. Edumatic: Jurnal Pendidikan Informatika, 4(2), 164-171. Form https://doi.org/10.29408/edumatic.v4i2.2688.

Valero-Carreras, D., Alcaraz, J., & Landete, M. (2023). Comparing two SVM models through different metrics based on the confusion matrix. Computers & Operations Research, 152, 106131. Form https://doi.org/10.1016/j.cor.2022.106131.

Valkenborg, D., Rousseau, A.-J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754-757. Form https://doi.org/10.1016/j.ajodo.2023.08.003.

Widaningsih, S. (2019). Perbandingan metode data mining untuk prediksi nilai dan waktu kelulusan mahasiswa prodi teknik informatika dengan algoritma C4, 5, Naïve Bayes, Knn Dan Svm. Jurnal Tekno Insentif, 13(1), 16-25. Form https://doi.org/10.36787/jti.v13i1.78.

Wiyono, S., Abidin, T., Wibowo, D., Hidayatullah, M., & Dairoh, D. (2019). Comparative study of machine learning knn, svm, and decision tree algorithm to predict students performance. International Journal of Research-Granthaalayah, 7(1), 190-196. Form https://doi.org/10.29121/granthaalayah.v7.i1.2019.1048.

Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11. Form https://doi.org/10.1186/s40561-022-00192-z.

Downloads

Published

2025-09-19

How to Cite

Tanyala, J., Pinasa, C., & Kumyoung, A. (2025). Prediction of Achievement in Primary School Students Using Support Vector Machine Algorithm. Trends of Humanities and Social Sciences Research, 13(2), 64–75. retrieved from https://so03.tci-thaijo.org/index.php/Humanties-up/article/view/288741

Issue

Section

Academic Article