A Comparative Analysis of Models for Forecasting Thailand’s Unemployment Rate, 2021-2024

Authors

  • Sureenat Manola Department of Business Information System, Faculty of Business Administration and Liberal Arts, Rajamamgala University of Technology Lanna
  • Theeraphop Saengsri Department of Business Information System, Faculty of Business Administration and Liberal Arts, Rajamamgala University of Technology Lanna
  • Tewa Promnuchanon Department of Business Information System, Faculty of Business Administration and Liberal Arts, Rajamamgala University of Technology Lanna

Keywords:

Models, Data forecasting, Unemployment rate

Abstract

This study aims to compare the performance of unemployment rate forecasting models, including the Autoregressive Integrated Moving Average (ARIMA), Holt’s Winters,          K-Nearest Neighbors (K-NN), and Linear Regression models. The analysis is based on Thailand’s unemployment rate data obtained from the Department of Employment, consisting of provincial-level data from 77 provinces covering the period from 2021 to 2024. The objective is to evaluate the performance of each model and compare their forecasting accuracy. The results indicate that the ARIMA model yields the lowest Mean Absolute Error (MAE) of 6,658.515 and the lowest Root Mean Square Error (RMSE) of 8,578.801, reflecting lower numerical forecasting errors and greater stability. Although Holt’s Winters model achieves the lowest Mean Absolute Percentage Error (MAPE) at 4%, indicating high relative accuracy, its RMSE and MAE values remain higher than those of the ARIMA model. The K-Nearest Neighbors (K-NN) model shows a moderate MAPE of 6% but exhibits a very high RMSE of 62,036.073, suggesting instability in its forecasting results. Meanwhile, the Linear Regression model records a MAPE of 0%, but its RMSE and MAE values are abnormally high, indicating an overfitting problem and poor suitability for practical applications. Therefore, the findings conclude that the ARIMA model is the most appropriate approach for forecasting Thailand’s unemployment rate, as it provides the best balance between forecasting accuracy and numerical error.

References

กองบริหารตลาดแรงงาน. (2567). สถิติความต้องการแรงงานรายจังหวัด. สืบค้น 28 สิงหาคม 2567. https://www.doe.go.th

ฐาปณีย์ บุญชอบ. (2563). เข้าใจ CRISP-DM ฉบับเร่งรัด. สืบค้น 20 มีนาคม 2567. https://kamboonchob.medium.com

วรางคณา กีรติวิบูลย์. (2559). การพยากรณ์จำนวนผู้ว่างงานในประเทศไทย. Asian Health, Science and echnology Reports (AHSTR). 24(1), 102–114. https://ph03.tci-thaijo.org/index.php/ahstr/article/view/1893

สำนักงานสถิติแห่งชาติ. (2566). รายงานการศึกษาค่าคาดการอัตราการว่างงานของประเทศไทย. สืบค้น 28 สิงหาคม 2567. https://www.nso.go.th/public/e-book/Analytical-Reports/Report_Unemployed_2566/66/

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1), 21–27. https://ieeexplore.ieee.org/document/1053964

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). OTexts.

Khanthavit, A. (2021). A causality analysis of lottery ambling and Unemployment in Thailand. Journal of Asian Finance Economics and Business. 8(8), 149–156. https://www.koreascience.kr/article/JAKO202120953711352.pdf

Mahipan, K., Chutiman, N., & Kumphon, B. (2013). A forecasting model for Thailand’s unemployment rate. Modern Applied Science. 7(7), 10–16. https://doi.org/10.5539/mas.v7n7p10

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis (5th ed.). Wiley.

Zhou, Z. (2023). Research of the influencing factors on unemployment rate. Highlights in Business, Economics and Management. 5, 134–141. https://doi.org/10.54097/hbem.v5i.5040

Downloads

Published

2025-12-23

How to Cite

Manola, S. . ., Saengsri, T. . ., & Promnuchanon, T. . (2025). A Comparative Analysis of Models for Forecasting Thailand’s Unemployment Rate, 2021-2024. Journal of Information Technology and Innovation, 24(2), 61–75. retrieved from https://so03.tci-thaijo.org/index.php/oarit/article/view/296740

Issue

Section

บทความวิจัย