Examining the COVID-19 Infodemic on Twitter: A Social Network Analysis in the Context of Thailand
Main Article Content
บทคัดย่อ
Previous research on the COVID-19 infodemic has focused on the Western world and a limited time frame. This study aims to bridge the gap by examining the infodemic in a different context - Thailand - over a longer period, from December 31, 2019 to July 31, 2021. The study’s objectives are to: understand how COVID-19 information pollution is spread on Twitter, assess the effectiveness of counter-narratives in reaching users, and identify the most common types of information pollution and trends. Content, sentiment, and social network analyses were conducted to achieve the study's objectives. The results showed that five categories of disinformation were the most common in the dataset: politics (45.70%), medical information (21.31%), vaccine_politics (16.33%), conspiracy_theory (7.68%), and vaccine_medical_info (6.28%). Most nodes interacted with information pollution (59.51%). Only a small proportion of the nodes engaged with debunking/fact-checked messages (16.87%) or both information pollution and debunking/fact-checked messages (23.61%). The results also revealed that the communication network is not completely isolated, as there are nodes that are well-connected to both information pollution and debunking/fact-checked messages. This suggests that users may be exposed to diverse content, even if they are primarily interacting with information pollution. Understanding the problem in its actual context could lead to the development of appropriate and effective responses to the current and future infodemic.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ลิขสิทธ์ที่ผู้เขียนบทความต้องยอมรับ
References
เทวฤทธิ์ มณีฉาย. (2021, January 13). ชาวทวิตเตอร์เริ่มเขย่าการเมืองได้อย่างไร? พลังติ่งเกาหลี ‘น่ากลัว’ แค่ไหน? [How do Twitter users influence politics? How ‘terrifying’ is the power of K-pop fans?]. Prachatai. https://prachatai.com/journal/2021/01/91178
วงศ์พันธ์ อมรินทร์เทวา. (2022a, May 12). Information operations in Thailand: Exploiting COVID-19 to suppress dissent. The101.World. https://www.the101.world/thai-io-covid/
วงศ์พันธ์ อมรินทร์เทวา. (2022b, May 12). Thailand: When online information operations support offline tactics. The101.World. https://www.the101.world/thai-io-covid-offline/
BBC. (2021, April 26). โควิด-19 : "ทองแท้ไม่กลัวไฟ" เป็นมาอย่างไร ขณะรายชื่อเรียกร้องอนุทินลาออกจากตำแหน่งใกล้ 2 แสน. BBC. https://www.bbc.com/thai/thailand-56889976
Bontcheva, K., Posetti, J., Teyssou, D., Meyer, T., Gregory, S., Hanot, C., & Maynard, D. (2020). Balancing Act: Countering Digital Disinformation While Respecting Freedom of Expression. https://www.broadbandcommission.org/Documents/working-groups/FoE_Disinfo_Report.pdf
Brennen, J. S., Simon, F., Howard, P. N., & Nielsen, R. K. (2020, April 7). Types, sources, and claims of COVID-19 misinformation. https://reutersinstitute.politics.ox.ac.uk/types-sources-and-claims-covid-19-misinformation
Chainan, P. (2020). Online Political Parody in Thailand: Political Communication under the Computer Crime Act (No.2) 2017. In C. Yamahata, S. Sudo, & T. Matsugi (Eds.), Rights and Security in India, Myanmar, and Thailand (pp. 141-150). Springer Singapore. https://doi.org/10.1007/978-981-15-1439-5_8
Cheng, M., Yin, C., Nazarian, S., & Bogdan, P. (2021). Deciphering the laws of social network-transcendent COVID-19 misinformation dynamics and implications for combating misinformation phenomena. Scientific reports, 11(1), 10424. https://doi.org/10.1038/s41598-021-89202-7
Cherven, K. (2013). Network Graph Analysis and Visualization with Gephi. Packt Publishing.
Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), e2023301118. https://doi.org/10.1073/pnas.2023301118
Duffy, A., Tandoc, E., & Ling, R. (2019). Too good to be true, too good not to share: the social utility of fake news. Information, Communication & Society, 23(13), 1965-1979. https://doi.org/10.1080/1369118X.2019.1623904
Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter Bubbles, Echo Chambers, and Online News Consumption. Public Opinion Quarterly, 80(S1), 298–320. https://doi.org/10.1093/poq/nfw006
Goodwin, R., Wiwattanapantuwong, J., Tuicomepee, A., Suttiwan, P., & Watakakosol, R. (2020). Anxiety and public responses to covid-19: Early data from Thailand. Journal of Psychiatric Research, 129, 118-121. https://doi.org/10.1016/j.jpsychires.2020.06.026
Human Rights Watch. (2020a, March 25). Thailand: COVID-19 Clampdown on Free Speech. https://www.hrw.org/news/2020/03/25/thailand-covid-19-clampdown-free-speech
Ignatow, G., & Mihalcea, R. (2018). An introduction to text mining : research design, data collection, and analysis. SAGE Publications.
Igual, L., & Seguí, S. (2017). Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications. Springer Nature.
Ireton, C., & Posetti, J. (Eds.). (2018). Journalism, ‘Fake News’ & Disinformation: Handbook for Journalism Education and Training. France: United Nations Educational, Scientific and Cultural Organization (UNESCO).
Issac, A., Radhakrishnan, R. V., Vijay, V. R., Stephen, S., Krishnan, N., Jacob, J., Nair, A. S. (2021). An examination of Thailand's health care system and strategies during the management of the COVID-19 pandemic. Journal of global health, 11, 03002-03002. https://doi.org/10.7189/jogh.11.03002
Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. Plos One, 9(6), 1-12. https://doi.org/10.1371/journal.pone.0098679
Khokhar, D. (2015). Gephi Cookbook. Packt Publishing.
Kobourov, S. G. (2014). Force-Directed Drawing Algorithms. In R. Tamassia (Ed.), Handbook of Graph Drawing and Visualization (pp. 480). CRC Press.
Lawattanatrakul, A., & Sutthichaya, Y. (2022, March 28). 2 ปี พ.ร.ก.ฉุกเฉิน กับการควบคุมการระบาดของการชุมนุมและเสียงวิจารณ์. Prachatai. https://prachatai.com/journal/2022/03/97899
Marome, W., & Shaw, R. (2021). COVID-19 Response in Thailand and Its Implications on Future Preparedness. International journal of environmental research and public health, 18(3), 1089. https://doi.org/10.3390/ijerph18031089
Maude, R. R., Jongdeepaisal, M., Skuntaniyom, S., Muntajit, T., Blacksell, S. D., Khuenpetch, W., Pan-Ngum, W., Taleangkaphan, K., Malathum, K., & Maude, R. J. (2021). Improving knowledge, attitudes and practice to prevent COVID-19 transmission in healthcare workers and the public in Thailand. BMC public health, 21(1), 749. https://doi.org/10.1186/s12889-021-10768-y
Meer, T. G. L. A. V. d., Hameleers, M., & Kroon, A. C. (2020). Crafting Our Own Biased Media Diets: The Effects of Confirmation, Source, and Negativity Bias on Selective Attendance to Online News. Mass Communication and Society, 23(6), 937-967. https://doi.org/10.1080/15205436.2020.1782432
Menczer, F., Fortunato, S., & Davis, C. A. (2020). A First Course in Network Science. Cambridge: Cambridge University Press.
Mondal, M., Silva, L. A., & Benevenuto, F. (2017). A Measurement Study of Hate Speech in Social Media Proceedings of the 28th ACM Conference on Hypertext and Social Media, Prague, Czech Republic. https://doi.org/10.1145/3078714.3078723
National Electronics and Computer Technology Center (NECTEC). (2016, September 22). S-Sense: Social Sensing. NECTEC (National Electronics and Computer Technology Center). https://www.nectec.or.th/innovation/innovation-software/s-sense.html
National Electronics and Computer Technology Center (NECTEC). (2019a, September 6). AI for Thai:แพล็ตฟอร์ม AI สัญชาติไทย. NECTEC (National Electronics and Computer Technology Center). https://www.nectec.or.th/innovation/innovation-software/aiforthai.html
National Electronics and Computer Technology Center (NECTEC). (2019b, September 9). “AI for Thai” พลิกโฉมดิจิทัลทรานฟอร์เมชันด้วยปัญญาประดิษฐ์. NECTEC (National Electronics and Computer Technology Center). https://www.nectec.or.th/research/research-project/aiforthai-digitaltransformation.html
Peddinti, S. T., Ross, K. W., & Cappos, J. (2014). “On the internet, nobody knows you're a dog”: a twitter case study of anonymity in social networks. Proceedings of the second ACM conference on Online social networks, Dublin, Ireland. https://doi.org/10.1145/2660460.2660467
Phasuk, S. (2021, August 13). Protesters, Police Clash in Thailand Vaccine Protests. Human Rights Watch. https://www.hrw.org/news/2021/08/13/protesters-police-clash-thailand-vaccine-protests
Pornbanggird, S. (2020, June 17). UN Praises Thailand’s Management of COVID-19 Threat. National News Bureau of Thailand.https://thainews.prd.go.th/en/news/detail/TCATG200617131619377
Posetti, J., & Bontcheva, K. (2020). DISINFODEMIC: Deciphering COVID-19 disinformation.https://en.unesco.org/sites/default/files/disinfodemic_deciphering_covid19_disinformation.pdf
Reuters in Bangkok. (2021, August 7). Thailand protesters clash with riot police over handling of Covid. The Guardian. https://www.theguardian.com/world/2021/aug/07/thailand-bangkok-protestors-clash-with-police-over-covid-management
Röchert, D., Shahi, G. K., Neubaum, G., Ross, B., & Stieglitz, S. (2021). The Networked Context of COVID-19 Misinformation: Informational Homogeneity on YouTube at the Beginning of the Pandemic. Online Social Networks and Media, 26, 100164. https://doi.org/10.1016/j.osnem.2021.100164
Sarkar, D. (2016). Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data. Springer Science+Business Meida New York.
Scott, J., & Carrington, P. J. (Eds.). (2014). The SAGE Handbook of Social Network Analysis. London. https://doi.org/10.4135/9781446294413.
Shu, K., Wang, S., Lee, D., & Liu, H. (Eds.). (2020). Disinformation, Misinformation, and Fake News in Social Media: Emerging Research Challenges and Opportunities: Springer Nature Switzerland AG.
Slutskiy, P., & Boonchutima, S. (2022). Credibility of the Official COVID Communication in Thailand: When People Stop Believing the Government. American Behavioral Scientist, 1-15. https://doi.org/10.1177/00027642221118297
Stephens-Davidowitz, S. (2018). Everybody Lies: What the Internet Can Tell Us About Who We Really Are.Bloosbury Publishing Plc.
Tandoc, E. C. (2019). The facts of fake news: A research review. Sociology Compass, 13(9), e12724. https://doi.org/10.1111/soc4.12724
Terren, L., & Borge-Bravo, R. (2021). Echo Chambers on Social Media: A Systematic Review of the Literature. Review of Communication Research, 9, 99-118. https://rcommunicationr.org/index.php/rcr/article/view/94
The Nation. (2021, December 20). Anutin explains his Covid-19 is 'weak' comment. The Nation. https://www.nationthailand.com/in-focus/40010187
Törnberg, P. (2018). Echo chambers and viral misinformation: Modeling fake news as complex contagion. Plos One, 13(9). https://doi.org/10.1371/journal.pone.0203958
United Nations. (2020, September 23). Countries urged to act against COVID-19 ‘infodemic’. https://news.un.org/en/story/2020/09/1073302
Vasu, N., Ang, B., & Jayakumar, S. (Eds.). (2019). DRUMS: Distortions, Rumours, Untruths, Misinformation, and Smears. World Scientific Publishing.
Wantanasombut, A. (2019, July 28). ‘นิรนามบนโลกออนไลน์’ ว่าด้วยการมีตัวตนและไร้ตัวตนบนโซเชียลมีเดีย ['online anonymity,' the issue of disclosing identity and being anonymous on social media]. The MATTER. https://thematter.co/thinkers/disguise-on-online-world/81564
Wardle, C. (2019). First Draft’s ‘Essential Guide to Understanding Information Disorder’. First Draft. https://firstdraftnews.org/wp-content/uploads/2019/10/Information_Disorder_Digital_AW.pdf
Wardle, C., & Derakhshan, H. (2018). Information Disorder: Toward an interdisciplinary framework for research and policymaking. https://rm.coe.int/information-disorder-report-version-august-2018/16808c9c77
Wieringa, R. (2020, June 5). A business model of the Facebook ecosystem. https://www.thevalueengineers.nl/a-business-model-of-the-facebook-ecosystem/
World Health Organization. (2020). An ad hoc WHO technical consultation managing the COVID-19 infodemic: call for action. https://www.who.int/publications/i/item/9789240010314