Factors Influencing the Consumer Decision-Making Process for Residential Solar Panel Purchases in Chonburi Province

Main Article Content

Atisak Rienrungrote
ธนภณ นิธิเชาวกุล
กัญจนวลัย นนทแก้ว แฟร์รี่

Abstract

       This research aims to 1) To study the marketing mix factors and perceived value that directly influence the decision-making process in purchasing residential solar panels. 2) To examine the marketing mix factors that directly influence the perceived value of residential solar panels. 3) To investigate the marketing mix factors that indirectly influence the decision-making process through perceived value regarding residential solar panels, consistent with empirical data. This is a quantitative research study, utilizing a questionnaire as the research instrument. Reliability and validity were measured using Cronbach's alpha and the Index of Item-Objective Congruence (IOC), with values exceeding 0.50 indicating content validity. This methodology follows the guidelines of Supamas Angsuchoti et al. (2009), which recommend a sample size of 20 times the number of observable variables. The research collected data from 356 respondents through purposive sampling targeted at electricity users interested in energy savings and the use of solar panels. Descriptive statistics, including percentages and means, were employed to analyze the data. Additionally, causal analysis was conducted using Structural Equation Modeling (SEM).


       The findings revealed that the marketing mix has a direct influence on the perceived value and decision-making process of consumers purchasing residential solar panels in Chonburi Province, with complete mediation at a statistical significance level of 0.001. The perceived value has a direct influence on the decision-making process, also with complete mediation, at a statistical significance level of 0.05. The marketing mix exerts an indirect influence through perceived value on the decision-making process, with complete mediation, at a statistical significance level of 0.05. This aligns with the concept of value creation using marketing mix strategies to promote the use of renewable energy within communities. This research contributes to expanding the body of knowledge in clean energy marketing and can be applied to develop proactive strategies to promote the decision-making process for purchasing solar panels at both community and national levels.

Article Details

How to Cite
Rienrungrote, A., นิธิเชาวกุล ธ. ., & นนทแก้ว แฟร์รี่ ก. (2025). Factors Influencing the Consumer Decision-Making Process for Residential Solar Panel Purchases in Chonburi Province. Journal of MCU Phetchaburi Review, 8(2), 200–211. retrieved from https://so03.tci-thaijo.org/index.php/JPR/article/view/290522
Section
Research Articles

References

Ailawadi, K. L., & Farris, P. W. (2017). Managing Retail Marketing Channels. Journal of Retailing, 93(2), 164-182.

Anderson, J. C., Narus, J. A., & Rossum, W. (2006). Customer Value Propositions in Business Markets. Harvard Business Review, 84(3), 90-99.

Berkeley Lab. (2023). Solar Investment and Performance. Berkeley National Laboratory. Retrieved from https://www.cesa.org/event/rps-ces-berkeley-labs-2023-review/

Chaudhuri, A., & Holbrook, M. B. (2001). The Chain of Effects from Brand Trust and Brand Affect to Brand Performance: The Role of Brand Loyalty. Journal of Marketing, 65(2), 81-93.

Chen, Y., Chang, C., & Lin, P. (2019). Consumer Perceptions and Energy Pricing Strategies in Renewable Energy Markets. Renewable Energy, 138, 530-540.

De Groot, J. I., de Groot, D., & van der Ploeg, F. (2020). Effective Value Communication Strategies in Sustainable Energy Markets. Energy Policy, 138, 111-122.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.

Fuchs, C. (2017). Developing Effective Pricing Strategies for Sustainable Markets. Journal of Business Ethics, 144(4), 689-702.

Graham, S., & Gillingham, K. (2016). Barriers to Solar Power Adoption: An Analysis of Consumer Behavior. Energy Economics, 59, 269-278.

Grewal, D., & Levy, M. (2014). Marketing. McGraw-Hill Education.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7th ed.). Pearson.

Harrison, A. W., & Low, L. (2009). Pricing Strategies and Perceived Value in the Solar Energy Market. Energy Policy, 37(11), 4565-4571.

Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling (4th ed.). Guilford Publications.

Kotler, P., & Keller, K. L. (2016). Marketing Management (15th ed.). Pearson.

Lamb, C. W., Hair, J. F., & McDaniel, C. (2017). MKTG (12th ed.). Cengage Learning.

Lichtenstein, D. R., Burton, S., & Zane, C. M. (2018). Consumer Confidence and Purchase Intentions: The Role of Perceived Value. Journal of Consumer Research, 44(1), 150-165.

Liu, Y., & Zhang, J. (2016). Customer Loyalty and Product Quality: The Impact of Brand Trust. International Journal of Business and Management, 11(4), 97-108.

Morgan, R. M., & Hunt, S. D. (1994). The Commitment-Trust Theory of Relationship Marketing. Journal of Marketing, 58(3), 20-38.

Monroe, K. B. (2003). Pricing: Making Profitable Decisions (3rd ed.). McGraw-Hill.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory (3rd ed.). McGraw-Hill.

Saeidi, S. P., Saeidi, P., & Saeidi, T. (2017). The Impact of Trust and Customer Engagement on Customer Loyalty in the Context of E-commerce. Electronic Commerce Research and Applications, 22, 14-25.

Smith, S., & Colgate, M. (2007). Customer Value Creation: A Practical Framework. Journal of Marketing Theory and Practice, 15(1), 7-23.

Solomon, M. R. (2016). Consumer Behavior: Buying, Having, and Being (12th ed.). Pearson.

Sweeney, J. C., & Soutar, G. N. (2001). Consumer Perceived Value: The Development of a Multiple-Item Scale. Journal of Retailing, 77(2), 203–220.

Wang, Y., & Yang, Q. (2016). Distribution Channels and Customer Access: A Study on the Efficacy of Market Reach. Journal of Business Logistics, 37(1), 45-58.

Wei, Y., & Zhang, P. (2018). Cost Savings and Perceived Value in Renewable Energy Adoption. Energy Policy, 122, 447-456.

Zeithaml, V. A. (1988). Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52(3), 2-22.

กระทรวงพลังงาน. (2566). สถิติการใช้ไฟฟ้าประเทศไทยประจำปี 2566. สืบค้น 29 กรกฎาคม 2566. จาก https://public.tableau.com/app/profile/epposite/viz/Electricity_Consumption/sheet2

กรมการปกครอง. (2566). ระบบสถิติทางการทะเบียนราษฎร(รายเดือน). สืบค้น 29 กรกฎาคม 2566. จาก https://stat.bora.dopa.go.th/stat/statnew/statMONTH/statmonth/#/displayData

สายสุนีย์ สิทธิมงคล. (2564). โมเดลเชิงสาเหตุส่วนประสมทางการตลาดและการรับรู้คุณค่าในตลาดพลังงานทดแทน. วิทยานิพนธ์ปริญญามหาบัณฑิต มหาวิทยาลัยราชภัฏ.

สุภมาส อังศุโชติ, คณะ. (2552). แนวทางการกำหนดขนาดตัวอย่างในการวิจัย. วารสารวิจัยและสถิติ, 12(4), 50-55.

ศิริชัย พงษ์วิชัย. (2556). การใช้ IOC ในการตรวจสอบความตรงของแบบสอบถาม. วารสารวิจัยและพัฒนา, 8(2), 45-52.

สุขสันต์ ทองสุก และอรรถพล เง่าพิทักษ์กุล. (2561). ปัจจัยสนับสนุนการใช้พลังงานแสงอาทิตย์ในชุมชน. วิทยานิพนธ์มหาบัณฑิต, มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี.