Developing Mathematical Activities to Promote Students’ Self-learning

Authors

DOI:

https://doi.org/10.60027/iarj.2024.275804

Keywords:

Mathematical Activity; , Seilf-Learning; , Lesson Study incorporated with Open Approach

Abstract

Background and Aims: The promotion of self-learning is both a principle and a crucial goal of education for global citizens in the future. The education sector has sought approaches to manage learning so that learners can learn independently, which is widely believed to be lifelong learning. Lesson Study incorporated with an Open Approach (TLSOA) is utilized to promote self-directed learning. Developing mathematical activity through TLSOA to enhance students' self-directed learning is a significant area of study. This research aims to explain the development of mathematical activities to promote self-directed learning of students using  TLSOA as a tool.

Methodology: It employs qualitative research methods to gather and analyze data. The research focuses on the parallelogram area, six consecutive lessons, and the target group, including 3 researchers, 1 mathematics teacher, 15 third-year students, and 9 fifth-grade students. Instruments for data collection include collaborative planning sheets, field notes to record student ideas, video cameras to record classroom learning activities, and cameras to document student work and learning management boards. Content analysis and self-study are used to analyze the data, employing the mathematical activity framework proposed by Asami-Johansson.

Results: The research findings indicate that the Lesson Study Team develops mathematical activities to promote students' self-directed learning as follows: (1) Development to foster students' willingness to participate in mathematical activities by: 1) Designing challenging problems for students. 2) Using problems that align with students' experiences. 3) Sequencing the questions. 4) Designing media to support students' self-solving of problems. 5) Preparing supplementary media to support students' idea presentations. (2) Development to support students in purposeful mathematical activities by: 1) Teams in the classroom must solve problems from Japanese textbooks. 2) Analyzing the difficulties of problems. 3) Anticipating student’s ideas that will arise in the classroom. 4) Sequencing the problems students will encounter. 5) Analyzing students' experiences. 6) Designing problem situations to help students identify problems or goals for self-solving. 7) Designing instructions. 8) Anticipating student’s ideas and responses to instructions. 9) Preparing media aligned with problem situations. 10) Sequencing presentations based on Anticipating student’s ideas.

Conclusion: The results of the study show that the Lesson Study Team deliberately creates mathematical tasks that foster students' autonomous learning by posing difficult questions, matching them to their prior knowledge, organizing the questions in a logical order, and offering helpful resources. In addition, they encourage intentional mathematical engagement through methodical problem analysis, anticipating student thoughts, and organizing instructions and presentations with care.

References

ประเวศ วะสี. (2543). หัวใจของการปฏิรูปการศึกษา คือ การปฏิรูปการเรียนรู้, ปฏิรูปการเรียนรู้ผู้เรียนสำคัญที่สุด. กรุงเทพมหานคร : โรงพิมพ์คุรุสภาลาดพร้าว.

ไมตรี อินทร์ประสิทธิ์ และคณะ. (2546). การปฏิรูปกระบวนการเรียนรู้คณิตศาสตร์ในโรงเรียนโดยเน้น กระบวนการทางคณิตศาสตร์. ขอนแก่น: ขอนแก่นการพิมพ์.

ไมตรี อินทร์ประสิทธิ์. (2557). กระบวนการแก้ปัญหาในคณิตศาสตร์ระดับโรงเรียน. ขอนแก่น: เพ็ญพรินติ้ง.

ไมตรี อินทร์ประสิทธิ์. (2559). การพัฒนาแนวทางการสอนคณิตศาสตร์ที่เน้นการแก้ปัญหาโดยใช้แนวคิดของนักเรียนเป็นฐาน. มหาวิทยาลัยขอนแก่น:ขอนแก่น

ไมตรี อินทร์ประสิทธิ์. (2562). (บรรยาย) การสอนทักษะการคิดในศตวรรษที่ 21 ระดับประถมศึกษา: การออกแบบลำดับการสอน (Flow of Lesson). EDUCA 2018: The 13th Annual Congress for Teacher Professional Development.

Asami-Johansson, Y. (2021). The Didactic Notion of “Mathematical Activity” in Japanese Teachers’ Professional Scholarship: A Case Study of an Open Lesson. Journal of Research in Mathematics Education 10(1), 88-112.

Becker, J.P. & Shimada, S. (1997). The Open-Ended Approach: A New Proposal for Teaching Mathematics. Reston, Virginia: National Council of Teachers of Mathematics.

Darling-Hammond, L. & Bransford, J. (Eds.). (2005). Preparing Teachers for a Changing World: What Teachers Should Learn and Be Able to Do. San Francisco, CA, US: Jossey-Bass.

Fujii, T. (2014). Implementing Japanese Lesson Study in Foreign Countries: Misconceptions Revealed. Mathematics Teacher Education and Development, 16 (1), 1-18.

Hsieh, H. & Shannon, S.E. (2005). Three Approaches to Qualitative Content Analysis. Qualitative Health Research, 15(9),1277-1288.

Ikeda, T. (2010). “Roots of the Open-Ended Approach”. In M. Isoda and T. Nakamura (Eds.), Special Issue (EARCOME 5). Mathematics Education Theories for Lesson Study: Problem-Solving Approach and the Curriculum through Extension and Integration. (p.6). Tokyo: Bunshoudo Insatusho.

Inprasitha, M. (2022). Lesson Study and Open Approach Development in Thailand: A Longitudinal Study. International Journal for Lesson and Learning Studies 11(5), 1-15.

Inprasitha, M. (2003). Teaching by using an open approach in the mathematics classroom of Japan. KKU Journal of Mathematics Education, 1, 1-17.

Inprasitha, M. (2011). One feature of adaptive lesson study in Thailand: Designing learning units. Journal of Science and Mathematics Education, 34, 47-66.

Inprasitha, M. (2014). Processes of Problem Solving in School Mathematics. Khonkaen: Pen Printing

Inprasitha, M. (2015). Transforming Education through Lesson Study: Thailand’s Decade-Long Journey”. In M. Inprasitha, M. Isoda, P. Wang-Iverson, & B. H. Yeap (Eds.), Lesson Study: Challenges in Mathematics Education. pp. 213-228. Singapore: World Scientific.

Isoda, M. & Nakamura, T. (2010). The Theory of Problem Solving Approach. Special Issue (EARCOME 5) Mathematics Education Theories for Lesson Study: Problem-Solving Approach and the Curriculum through Extension and Integration. (p.1). Tokyo: Bunshoudo Insatusho.

Kilpatrick, J. (1992). A History of Research in Mathematics Education. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 3-38). New York: Macmillan.

Makinae, N. (2010). The Origin of Lesson Study in Japan. The 5th East Asia Regional Conference on Mathematics Education: In Search of Excellence in Mathematics Education, 15, Tokyo.

Mangao, D.D., Ahmad, N.J. & Isoda, M. (2017). SEAMEO Basic Education Standards (SEA-BES): Common Core Regional Learning Standards (CCRLS) in Mathematics and Science. Penang, Malaysia: Publication Unit, SEAMEO RECSAM.

MEXT (Ministry of Education, Culture, Sports, Science and Technology) (2008). Junior high school teaching guide for the Japanese Course of Study: Mathematics. (English version translated by CRICED). Retrieved on 10 February 2018 from: http://www.criced.tsukuba.ac.jp/math/apec/ICME12/Lesson_Study_set/Junior_high_school-teaching-guide-Mathmatics-EN.pdf.

Schoenfeld, A. (2007). Method. In F. K. Lester, Jr. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning. pp. 69-107. Charlotte, NC: Information Age Publishing.

Schoenfeld, A. (2014). What Makes for Powerful Classrooms, and How Can We Support Teachers in Creating Them? A Story of Research and Practice, Productively Intertwined. Educational Researcher 43(8), 404-412.

Shimizu, Y. (1999). Aspects of Mathematics Teacher Education in Japan: Focusing on Teachers’ Roles. Journal of Mathematics Teacher Education, 2(1), 107–116.

Stigler, J. & Hiebert, J. (1999). The Teaching Gap. New York: The Free Press.

Suazo-Flores, E., Ward, J., Richardson, S. E., Grant, M., Cox, D., Kastberg, S. E. & Chapman, O. (2020). “Mathematics Teacher Educators Using Self-based Methodologies”. In A. I. Sacristán, J. C. Cortés-Zavala and P. M. Ruiz-Arias (Eds.), Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. pp. 181-184. Mazatlán, México.

Takahashi, A. (2021). Teaching Mathematics Through Problem-Solving: A Pedagogical Approach from Japan. New York: Routledge.

Tzekaki, M. (2014). Mathematical Activity in Early Childhood and the Role of Generalization. In book: Mathematics Education in the Early Years, Results from the POEM4 Conference, 2018 (pp.301-313). DOI:10.1007/978-3-030-34776-5_18

Downloads

Published

2024-06-07

How to Cite

Laah-On, S. ., Moonpo, P., & Wetbunpot, K. . (2024). Developing Mathematical Activities to Promote Students’ Self-learning. Interdisciplinary Academic and Research Journal, 4(3), 639–652. https://doi.org/10.60027/iarj.2024.275804

Issue

Section

Articles