A Causal Relationship Model of Cloud Computing Technology Acceptance toward Bachelor Degree Students
Main Article Content
Abstract
Cloud computing technology is nowadays increasingly used in education, whereas most users are still concerned about its security that in turn affects their acceptance to use. Previous research mostly focused on applying cloud technology in the education area more than analysing factors influencing student acceptance of cloud computing. Therefore, this research aimed to develop a causal relationship model affecting bachelor degree students’ acceptance of cloud computing to verify the consistency of the model with the empirical data, and to study direct influence, indirect influence, and combined influence. The data was collected using online questionnaires from 230 samples who were university students at bachelor’s degree level. The model was analyzed by LISREL program.
The results found that the causal relationship model for higher education students' adoption of cloud computing was consistent with empirical data at a good level: Chi-square (c2) = 16.83, df = 11, c2/df = 1.53, GFI = 0.98, CFI = 0.99, AGFI = 0.93, p-value = 0.11, RMSEA = 0.04 and SRMR = 0.01. Moreover, all factors used in the model could explain 79.00% of the variances of behavioral intention to use cloud computing. Therefore, this model could be adapted to create related policies or guidelines for building more students’ acceptance of using the cloud to store and use their data.
Article Details
References
กระทรวงศึกษาธิการ. (2560). การขับเคลื่อนการปฏิรูปการศึกษาของกระทรวงศึกษาธิการในภูมิภาค. สืบค้น 2 พฤษภาคม 2562 จากhttp://www.moe.go.th/moe/th/news/detail.php?NewsID=45408&Key=news19.
นภาภรณ์ ฉัตรมณีรุ่งเจริญ. (2555). การศึกษาการยอมรับการจัดการเรียนรู้แบบอีเลิร์นนิงของอาจารย์และนิสิตมหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน. วารสารวิชาการ Veridian E-Journal, Silpakorn University, 5(2), 388-402.
ภาสกร เรืองรอง, ประหยัด จริะวงพงศ์, วณิชชา แม่นยำ, วิลาวัลย์ สมยาโรน, ศรันยู หมื่นเดช และชไมพร ศรีสุราช. (2557). เทคโนโลยีการศึกษากับครูไทยในศตวรรษที่ 21. วารสารปัญญาภิวัฒน์, 5, 195-207.
Al-Gahtani, S. S. (2016). Empirical investigation of e-learning acceptance and assimilation: A structural equation model. Apply Computer Information, 12(1), 27-50.
Alharbi, S. T. (2012). Users’ Acceptance of cloud computing in Saudi Arabia: An extension of Technology Acceptance Model. International Journal of Cloud Application and Computing, 2(2), 1-11.
Alharbi, S., & Drew, S. (2014). Using the Technology Acceptance Model in Understanding Academics’ Behavioural Intention to Use Learning Management Systems. International Journal of Advanced Computer Science and Applications, 5(1), 143-155.
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I. & Zaharia, M. (2010). A View of Cloud Computing. Communications of the ACM, 53(4), 50-58.
Behrend, T. S., Wiebe, E. N., London, J. E., & Johnson, E. C. (2011). Cloud computing adoption and usage in community colleges. Behaviour & Information Technology, 30(2), 231-240.
Davis, F. D., Bagozzi, R., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Ekufu, T. K. (2012). Predicting Cloud Computing Technology Adoption by Organizations: An Empirical Integration of Technology Acceptance Model and Theory of Planned Behavior. (Doctoral Dissertation) Capella University, United States
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1), 107-130.
Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-Type scales. Conference in Adult, Continuing, and Community Education, 82-88.
Hair, J. F., Black, W. C., Babin, B. J., & Andrson, R. E. (2010). Multivariate data analysis : a global perspective. New Jersey: Prentice-Hall, 145-146.
Hsieh, P.-J. (2015). Healthcare Professionals’ Use of Health Clouds: Integrating Technology Acceptance and Status Quo Bias Perspectives. International Journal of Medical Informatics, 84(7), 512-523.
Jan, A. U., & Contreras, V. (2011). Technology acceptance model for the use of information technology in universities. Computers in Human Behavior, 27(2), 845-851.
Leng, G. S., Lada, S., Muhammad, M. Z., Ibrahim, A. A. H. A., & Amboala, T. (2015). An Exploration of Social Networking Sites (SNS) Adoption in Malaysia Using Technology Acceptance Model (TAM), Theory of Planned Behavior (TPB) and Intrinsic Motivation. The Journal of Internet Banking and Commerce, 16(2), 1-27.
Mangin, J. P. L., Bourgault, N. León, J. A. M. & Guerrero, M. M. (2012). Testing control, innovation and enjoy as external variables to the technology acceptance model in a north American French banking environment. International Business Research, 5(2), 13-26.
Mudaly, S., Singh, P. & Olugbara, O. O. (2013). Improved technology acceptance model applied to study enterprise resource planning usage. 2013 Science and Information Conference (SAI), 782–790.
Nikou, S. A. & Economides, A. A. (2017). Mobile-Based Assessment: Integrating Acceptance and Motivational Factors into a Combined Model of Self-Determination Theory and Technology Acceptance. Computers in Human Behavior, 68, 83-95.
Opitz, N., Langkau, T. F., Schmidt, N. H. & Kolbe, L. M. (2012). Technology Acceptance of Cloud Computing: Empirical Evidence from German IT Departments. 2012 Hawaii International Conference on System Sciences, HICSS, 1593-1602.
Padilla-Meléndez, A., del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computer Education, 63, 306-317.
Panmuang, M. & Porrawatpreyakorn, N. (2016). Factors influencing acceptance of and benefit realization from information systems in Thai state enterprises. 2016 Conferences and Publishing International of 16th European Conference on e-Government, ECEG 2016, 343–347.
Park, E. & Kim, K. J. (2014). An Integrated Adoption Model of Mobile Cloud Services: Exploration of Key Determinants and Extension of Technology Acceptance Model. Telematics and Informatics, 31(3), 376-385.
Park, N., Rhoads, M., Hou, J., & Lee, K. M. (2014). Understanding the acceptance of teleconferencing systems among employees: An extension of the technology acceptance model. Computers in Human Behavior, 39, 118-127.
Rese, A. Schreiber, S. & Baier, D. (2014). Technology acceptance modeling of augmented reality at the point of sale: Can surveys be replaced by an analysis of online reviews?. Journal of Retailing and Consumer Services, 21(5), 869–876.
Sakunpong, N., Choochom, O., & Taephant, N. (2016). Development of a resilience scale for Thai substance-dependent women: A mixed methods approach. Asian Journal of Psychiatry, 22, 177-181.
Shaikh, F. B., & Haider, S. (2011). Security threats in cloud computing. 2011 International Conference for Internet Technology and Secured Transactions, ICITST, 214–219.
Shroff, R. H., Deneen, C. C., & Ng, E. M. W. (2011). Analysis of the technology acceptance model in examining students’ behavioral intention to use an e-portfolio system. Australasian Journal of Educational Technology, 27(4), 600-618.
Stantchev, V., Colomo-Palacios, R., Soto-Acosta, P., & Misra, S. (2014). Learning management systems and cloud file hosting services: A study on students’ acceptance. Computers in Human Behavior, 31, 612–619.
Tarhini, A., Hone, K., & Liu, X. (2014). The effects of individual differences on e-learning users’ behavior in developing countries: A structural equation model. Computer Human Behavior, 41, 153-163.
Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management, 51(2), 249-259.
Wu, W.-W., Lan, L. W. & Lee, Y.-T. (2013). Factors hindering acceptance of using cloud services in university: a case study. The Electronic Library, 31(1), 84-98.