Factors Affecting User Loyalty of Service Applications Case study of Cleaning Air Conditioners During the COVID-19 Situation

Main Article Content

Pimphapatsorn Chullbussapa*
Korbkul Jantarakolica
Soibuppha Sartmool
Supawat Sukhaparamate
Tatre Jantarakolica
Woraphon Wattanatorn

Abstract

         The purpose of this research was to identify factors that affect user’s loyalty to service applications for clean air conditioner during the COVID-19 and to compare the differences in factors affecting the loyalty of users of the air conditioner cleaning application of the state enterprise (PEA). The research applied the conceptual framework of applied research from the Technology Acceptance Model, cognitive-impact-behavior model and protection motivation theory.
        This research was quantitative research using questionnaires. By stratified random sampling from 420 smartphone air conditioner cleaning app users in Thailand during November 2020 - July 2021, the data was analyzed using a structural equation model.
        The research found that 1) the factors affecting the loyalty of users of the air conditioner cleaning application were statistically significant, perception of ease of use,  interface quality, satisfaction, the attitude of use perceived, Switching cost, perceived protection motivation, perceived security, respectively. 2) PEA Hero Care and Service application users, the switching cost factor affecting loyalty is higher than other application users. but users of other applications satisfaction factor affecting loyalty is higher than PEA Hero Care and Service application users.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Chullbussapa*, P. ., Jantarakolica, K. ., Sartmool, S. ., Sukhaparamate, S. ., Jantarakolica, T. ., & Wattanatorn, W. . (2022). Factors Affecting User Loyalty of Service Applications Case study of Cleaning Air Conditioners During the COVID-19 Situation. Journal of Management Science, Ubon Ratchathani University, 11(2), 78–95. retrieved from https://so03.tci-thaijo.org/index.php/jms_ubu/article/view/256425
Section
บทความวิจัย (Research Article)

References

ฐะนุพงศ์ ศรีกาฬสินธุ์, อรรถศิษฐ์ พัฒนะศิริ และ อัญชนา กลิ่นเทียน (2563). Digital Disruption: เรากำลังถูกเทคโนโลยีทำลายล้างจริงหรือไม่? แล้วอะไรทำให้เกิด Digital Disruption?. สืบค้นเมื่อ 19 กันยายน 2564, จาก http://cosci.swu.ac.th/news-event/cas/2020/digital-disruption

ธนาคารไทยพาณิชย์. (2563). Future of Marketing: การตลาดดิจิทัล อาวุธโลกธุรกิจหลังโควิด-19. สืบค้นเมื่อ 20 กันยายน 2564, จาก https://www.scb.co.th/th/personal-banking/stories/business-maker/future-of-marketing.html

พัชราภรณ์ วรโชติกำจร และ สิทธิชัย วรโชติกำจร. (2563). การอยู่รอดจากการเปลี่ยนฉับพลันทางดิจิทัล. สืบค้นเมื่อ 19 กันยายน 2564, จาก http://cosci.swu.ac.th/news-event/cas/2020/digital-disruption

สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์. (2564). แผนยุทธศาสตร์เกี่ยวกับธุรกรรมทางอิเล็กทรอนิกส์ พ.ศ. 2564 - 2565. สืบค้นเมื่อ 5 พฤศจิกายน 2564, จาก https://www.etda.or.th/th/Useful-Resource/ET-Strategic-Plan-64-65.aspx

Ajzen, I., & Fishbein, M. (1975). A bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261-277.

Burnham, T. A., Frels, J. K., & Mahajan, V. (2003). Consumer switching costs: A typology, antecedents, and consequences. Journal of the Academy of Marketing Science, 31(2), 109-126.

Chang, H. H., & Chen, S. W. (2009). Consumer perception of interface quality, security, and loyalty in electronic commerce. Information & Management, 46(7), 411-417.

Chuang, J. H., Wang, J. H., & Liang, C. (2020). Implementation of internet of things depends on intention: Young farmers’ willingness to accept innovative technology. International Food and Agribusiness Management Review, 23(2), 253-265.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.

Dunn, S. P., & Rogers, R. W. (1986). Protection motivation theory and preventive health: Beyond the health belief model. Health Education Research, 1(3), 153-161.

Koufaris, M., & Hampton-Sosa, W. (2004). The development of initial trust in an online company by new customers. Information & Management, 41(3), 377-397.

Mitchev, T., & Chompu Nuangjamnong. (2021). The impact of e-commerce on customer satisfaction and customer loyalty during the COVID-19 pandemic: A quantitative analysis in Thailand. AU-GSB E-Journal, 14(2), 59-70.

Mulyana, A., Disman, D., Wibowo, L., & Hurriyati, R. (2020). Application of customer behavior in using fintech as business media based on the unified theory of acceptance and use of technology model. In The 3rd Global Conference on Business, Management, and Entrepreneurship (GCBME 2018) (pp. 69-75). Bandung: Atlantis Press.

Pourabedin, Z., Foon, Y. S., Chatterjee, R. S., & Ho, J. S. Y. (2016). Customers' online channel switching behavior: The moderating role of switching cost. Information, 19(7B), 2961-2970.

Prentice, C., Lopes, S. D, & Wang, X. (2020). The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. Journal of Hospitality Marketing & Management, 29(7), 739-756.

Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The Journal of Psychology, 91(1), 93-114.

Samudro, A., Sumarwan, U., Yusuf, E. Z., & Simanjuntak, M. (2018). Perceived value, social bond, and switching cost as antecedents and predictors of customer loyalty in the B2B chemical industry context: A literature review. International Journal of Marketing Studies, 10(4), 124-138.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.

Wang, J., Liu-Lastres, B., Ritchie, B. W., & Mills, D. J. (2019). Travelers’ self-protection against health risks: An application of the full Protection Motivation Theory. Annals of Tourism Research, 78. DOI: 10.1016/j.annals.2019.102743