Cluster Analysis for Optimal Infectious Waste Management Using Data Mining Techniques
Main Article Content
Abstract
Infectious waste management is a critical issue affecting the environment, public health, and operational costs, particularly during the COVID-19 pandemic, which significantly increased infectious waste volumes. This analytical research aimed to 1) to study the attributes of customers using infectious waste collection services, and 2) analyze customer data clustering using K-Means Clustering method. The study utilized data from 540 customers, comprising 37 large healthcare facilities and 503 small healthcare facilities of New Chok Amnuay Chiang Mai Company Limited. The analysis was conducted through Orange Data Mining software, considering variables including infectious waste quantity (0.5-12 kg/month), distance (0.3-15 km), and collection frequency. The results revealed three distinct customer clusters: Cluster 1 (85.66%) characterized by low waste quantity (average 1.2 kg/month), short distance (average 1.8 km), and moderate collection frequency; Cluster 2 (11.43%) with high waste quantity (average 8.5 kg/month), moderate distance (average 4.2 km), and low collection frequency; and Cluster 3 (2.91%) with moderate waste quantity (average 3.7 kg/month), long distance (average 8.5 km), and high collection frequency. The clustering showed high efficiency with a Silhouette Score of 0.873. The comparison of operational efficiency before and after implementation showed improvements in four main areas: time management, vehicle capacity utilization, collection frequency, and area management. These findings can be applied to optimize collection routes, design cluster-specific service packages, and improve resource management, leading to reduced operational costs and enhanced service quality. However, future studies should consider additional factors such as infectious waste types and GIS integration for more comprehensive and sustainable development.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ข้อความและบทความในวารสารการวัด ประเมินผล สถิติ และการวิจัยทางสังคมศาสตร์ เป็นแนวคิดของผู้เขียน มิใช่ความคิดเห็นของกองบรรณาธิการวารสาร จึงมิใช่ความรับผิดชอบของวารสารการวัด ประเมินผล สถิติ และการวิจัยทางสังคมศาสตร์ บทความในวารสารต้องไม่เคยตีพิมพ์ที่ใดมาก่อน และสงวนสิทธิ์ตามกฎหมายไทย การจะนำไปเผยแพร่ ต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากกองบรรณาธิการ
References
Bemthuis, R. H., Govers, R. R., & Asadi, A. (2024). A CRISP-DM-based methodology for assessing agent-based simulation models using process mining. arXiv. https://doi.org/10.48550/arXiv.2404.01114
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188.
Department of Health. (2024a). Infectious waste management during COVID-19 pandemic. Department of Health.
Department of Health. (2024b). Overview of infectious waste management situation in Thailand. Department of Health.
Fisher, R. A. (1927). Statistical methods for research workers. Protoplasma, 23, 282.
Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.
Pollution Control Department. (2022). Guidelines for infectious waste management. Pollution Control Department.