Impact of Climate Change on Dengue Incidence: A Systematic Review of Evidence from Southeast Asia
Main Article Content
Abstract
The issue of climate change has been recognized as a significant global concern, with the potential to have a profound impact on public health outcomes worldwide. Southeast Asia is a region highly susceptible to an increase in dengue incidence, which is influenced by climatic factors such as rainfall and temperature. The present study aims to investigate the relationship between climate change and the incidence of dengue in Southeast Asia. This systematic review, conducted in accordance with the PRISMA guidelines, searched the Scopus, PubMed, ScienceDirect, and Emerald databases using relevant keywords. Inclusion criteria were observational studies from peer-reviewed journals published between 2004 and 2024 that reported dengue incidence and quantitative associations with climate exposures. Eighteen articles met the inclusion criteria after a screening process. The analysis revealed an association of the incidence of dengue with temperature and rainfall. The majority of studies have reported that rising temperatures are associated with an increase in dengue cases. The majority of studies have identified a positive association with the incidence of dengue and rainfall. Findings for humidity were more complex, with some studies showing a negative correlation and others a positive correlation. Results for wind speed were also inconsistent across studies. This review highlights the significant association between climatic factors, particularly temperature and rainfall, of dengue transmission in Southeast Asia. Rising temperatures and increased rainfall are strongly associated with higher dengue incidence, likely by creating favorable conditions for mosquito breeding and virus transmission. The results underscore the need to incorporate climate data into dengue early warning systems and vector control strategies in dengue-endemic regions.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
• Abdullah, N. A. M. H., Dom, N. C., Salleh, S. A., Dapari, R., & Precha, N. (2025). Dengue’s climate conundrum: How vegetation and temperature shape mosquito populations and disease outbreaks. BMC Public Health, 25(1), Article 4. https://doi.org/10.1186/s12889-024-21105-4
• Abdullah, N. A. M. H., Dom, N. C., Salleh, S. A., Salim, H., & Precha, N. (2022). The association between dengue cases and climate: A systematic review and meta-analysis. One Health, 15, Article 100452. https://doi.org/10.1016/j.onehlt.2022.100452
• Adnan, R. A., Ramli, M. F., Othman, H. F., Asha’ri, Z. H., Ismail, S. N. S., Zaudi, M. A., Hamidon, A. K., Umar, D. A., & Samsudin, M. S. (2020). Implication of climatic factors on dengue fever in urban areas: Case study in 2012-2016. EnvironmentAsia, 13(3), 89–102. https://www.thaiscience.info/Journals/Article/ENVA/10992241.pdf
• Agrupis, K. A., Ylade, M., Aldaba, J., Lopez, A. L., & Deen, J. (2019). Trends in dengue research in the Philippines: A systematic review. PLOS Neglected Tropical Diseases, 13(4), Article e0007280. https://doi.org/10.1371/journal.pntd.0007280
• Aminuddin, M. A. M., Dom, N. C., & Yatim, S. R. M. (2025). Implication of heat islands on dengue incidence in urban areas: A systematic review. Journal of Public Health and Development, 23(1), 292–310. https://doi.org/10.55131/jphd/2025/230122
• Barcellos, C., Matos, V., Lana, R. M., & Lowe, R. (2024). Climate change, thermal anomalies, and the recent progression of dengue in Brazil. Scientific Reports, 14(1), Article 5948. https://doi.org/10.1038/s41598-024-56044-y
• Bellone, R., & Failloux, A.-B. (2020). The role of temperature in shaping mosquito-borne viruses transmission. Frontiers in Microbiology, 11, Article 584846. https://doi.org/10.3389/fmicb.2020.584846
• Benedum, C. M., Seidahmed, O. M. E., Eltahir, E. A. B., & Markuzon, N. (2018). Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLOS Neglected Tropical Diseases, 12(12), Article e0006935. https://doi.org/10.1371/journal.pntd.0006935
• Campbell, K. M., Haldeman, K., Lehnig, C., Munayco, C. V., Halsey, E. S., Laguna-Torres, V. A., Yagui, M., Morrison, A. C., Lin, C.-D., & Scott, T. W. (2015). Weather regulates the location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLOS Neglected Tropical Diseases, 9(7), Article e0003957. https://doi.org/10.1371/journal.pntd.0003957
• Cheong, Y., Burkart, K., Leitão, P., & Lakes, T. (2013). Assessing weather effects on dengue disease in Malaysia. International Journal of Environmental Research and Public Health, 10(12), 6319–6334. https://doi.org/10.3390/ijerph10126319
• Colón-González, F. J., Gibb, R., Khan, K., Watts, A., Lowe, R., & Brady, O. J. (2023). Projecting the future incidence and burden of dengue in Southeast Asia. Nature Communications, 14(1), Article 5439. https://doi.org/10.1038/s41467-023-41017-y
• Colón-González, F. J., Sewe, M. O., Tompkins, A. M., Sjödin, H., Casallas, A., Rocklöv, J., Caminade, C., & Lowe, R. (2021). Projecting the risk of mosquito-borne diseases in a warmer and more populated world: A multi-model, multi-scenario intercomparison modelling study. The Lancet. Planetary Health, 5(7), e404–e414. https://doi.org/10.1016/S2542-5196(21)00132-7
• Constenla, D., Garcia, C., & Lefcourt, N. (2015). Assessing the economics of dengue: Results from a systematic review of the literature and expert survey. PharmacoEconomics, 33(11), 1107–1135. https://doi.org/10.1007/s40273-015-0294-7
• Do, T. T. T., Martens, P., Luu, N. H., Wright, P., & Choisy, M. (2014). Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam. BMC Public Health, 14(1), Article 1078. https://doi.org/10.1186/1471-2458-14-1078
• Estallo, E. L., Sippy, R., Stewart-Ibarra, A. M., Grech, M. G., Benítez, E. M., Ludueña-Almeida, F. F., Ainete, M., Frías-Cespedes, M., Robert, M., Romero, M. M., & Almirón, W. R. (2020). A decade of arbovirus emergence in the temperate southern cone of South America: Dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon, 6(9), Article e04858. https://doi.org/10.1016/j.heliyon.2020.e04858
• Fernando, M., & Rajapaksha, N. U. R. M. (2023). How do climate variables affect the transmission of dengue infection in South and Southeast Asia: A scoping review. Asian Journal of Interdisciplinary Research, 6(1), 25–41. https://doi.org/10.54392/ajir2314
• Giesen, C., Herrador, Z., & Gómez-Barroso, D. (2022). Climate change, environmental factors and dengue in Africa. International Journal of Infectious Diseases, 116, Article S22. https://doi.org/10.1016/j.ijid.2021.12.053
• Goindin, D., Delannay, C., Ramdini, C., Gustave, J., & Fouque, F. (2015). Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLOS ONE, 10(8), Article e0135489. https://doi.org/10.1371/journal.pone.0135489
• Gui, H., Gwee, S., Koh, J., & Pang, J. (2021). Weather factors associated with reduced risk of dengue transmission in an urbanized tropical city. International Journal of Environmental Research and Public Health, 19(1), Article 339. https://doi.org/10.3390/ijerph19010339
• Hii, Y. L., Rocklöv, J., Ng, N., Tang, C. S., Pang, F. Y., & Sauerborn, R. (2009). Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Global Health Action, 2(1), Article 2036. https://doi.org/10.3402/gha.v2i0.2036
• Hurtado‐Díaz, M., Riojas‐Rodríguez, H., Rothenberg, S. J., Gómez‐Dantés, H., & Cifuentes, E. (2007). Short communication: Impact of climate variability on the incidence of dengue in Mexico. Tropical Medicine & International Health, 12(11), 1327–1337. https://doi.org/10.1111/j.1365-3156.2007.01930.x
• Husnina, Z., Clements, A. C. A., & Wangdi, K. (2019). Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006–2016: A spatiotemporal analysis. Tropical Medicine & International Health, 24(7), 888–898. https://doi.org/10.1111/tmi.13248
• Ibrahim Abdulsalam, F., Yimthiang, S., La-Up, A., Ditthakit, P., Cheewinsiriwat, P., & Jawjit, W. (2021). Association between climate variables and dengue incidence in Nakhon Si Thammarat Province, Thailand. Geospatial Health, 16(2), Article 1012. https://doi.org/10.4081/gh.2021.1012
• Iguchi, J. A., Seposo, X. T., & Honda, Y. (2018). Meteorological factors affecting dengue incidence in Davao, Philippines. BMC Public Health, 18(1), Article 629. https://doi.org/10.1186/s12889-018-5532-4
• Kamaruzzaman, K., Salleh, S. A., Pardi, F., Abdullah, M. F., Foronda, V., Bergonio, E. L., & Rahmawaty, R. (2025). Review of environmental monitoring in freshwater lakes using geospatial techniques (remote sensing and GIS). Geocarto International, 40(1), Article 2448978. https://doi.org/10.1080/10106049.2024.2448978
• Kamau, W. W., Sang, R., Rotich, G., Agha, S. B., Menza, N., Torto, B., & Tchouassi, D. P. (2023). Patterns of Aedes aegypti abundance, survival, human-blood feeding and relationship with dengue risk, Kenya. Frontiers in Tropical Diseases, 4, Article 1113531. https://doi.org/10.3389/fitd.2023.1113531
• Keman, S., Sulistiorini, L., Yudhastuti, R., & Agung, Y. (2022). Analysis of the effect of climate risk factors on cases of dengue hemorrhagic fever (DHF) in Kendari City. NeuroQuantology, 20(6), 6030–6042. https://doi.org/10.14704/nq.2022.20.6
• Khairunisa, U., Wahyuningsih, N. E., Suhartono, & Hapsari. (2018). Impact of climate on the incidence of dengue haemorrhagic fever in Semarang City. Journal of Physics: Conference Series, 1025, Article 012079. https://doi.org/10.1088/1742-6596/1025/1/012079
• Kolimenakis, A., Heinz, S., Wilson, M. L., Winkler, V., Yakob, L., Michaelakis, A., Papachristos, D., Richardson, C., & Horstick, O. (2021). The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—A systematic review. PLOS Neglected Tropical Diseases, 15(9), Article e0009631. https://doi.org/10.1371/journal.pntd.0009631
• Kraemer, M. U. G., Reiner, R. C. J., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., Yi, D., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T. A., Lai, S., Lu, X., Jones, P., Coelho, G. E., Carvalho, R. G., … Golding, N. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4(5), 854–863. https://doi.org/10.1038/s41564-019-0376-y
• Linh Tran, N. Q., Cam Hong Le, H. T., Pham, C. T., Nguyen, X. H., Tran, N. D., Thi Tran, T.-H., Nghiem, S., Ly Luong, T. M., Bui, V., Nguyen-Huy, T., Doan, V. Q., Dang, K. A., Thuong Do, T. H., Thi Ngo, H. K., Nguyen, T. V., Nguyen, N. H., Do, M. C., Ton, T. N., Thu Dang, T. A., … Phung, D. (2023). Climate change and human health in Vietnam: a systematic review and additional analyses on current impacts, future risk, and adaptation. The Lancet Regional Health - Western Pacific, 40, Article 100943. https://doi.org/10.1016/j.lanwpc.2023.100943
• Liu, Z., Zhang, Q., Li, L., He, J., Guo, J., Wang, Z., Huang, Y., Xi, Z., Yuan, F., Li, Y., & Li, T. (2023). The effect of temperature on dengue virus transmission by Aedes mosquitoes. Frontiers in Cellular and Infection Microbiology, 13, Article 1242173 https://doi.org/10.3389/fcimb.2023.1242173
• Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A., & Rocklöv, J. (2014). Vectorial Capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS ONE, 9(3), Article e89783. https://doi.org/10.1371/journal.pone.0089783
• Lover, A. A., Buchy, P., Rachline, A., Moniboth, D., Huy, R., Meng, C. Y., Leo, Y. S., Yuvatha, K., Sophal, U., Chantha, N., Y. B., Duong, V., Goyet, S., Brett, J. L., Tarantola, A., & Cavailler, P. (2014). Spatial epidemiology and climatic predictors of paediatric dengue infections captured via sentinel site surveillance, Phnom Penh, Cambodia 2011–2012. BMC Public Health, 14(1), Article 658. https://doi.org/10.1186/1471-2458-14-658
• Luna, E. J. A., Figueiredo, G. M., Levi, J. E., Campos, S. R. S. L. C., Felix, A. C., Souza, N. S., Figueiredo, W. M., Costa, A. A., Cardoso, M. R. A., & Pannuti, C. S. (2020). A cohort study to assess the incidence of dengue, Brazil, 2014–2018. Acta Tropica, 204, Article 105313. https://doi.org/10.1016/j.actatropica.2019.105313
• Marina, R., Ariati, J., Anwar, A., Astuti, E. P., & Dhewantara, P. W. (2023). Climate and vector-borne diseases in Indonesia: A systematic literature review and critical appraisal of evidence. International Journal of Biometeorology, 67(1), 1–28. https://doi.org/10.1007/s00484-022-02390-3
• Méndez-Lázar, P., Muller-Karger, F. E., Otis, D., McCarthy, M. J., & Peña-Orellana, M. (2014). Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico. International Journal of Environmental Research and Public Health, 4(11), 9409–9428. https://doi.org/10.3390/ijerph110909409
• Messina, J. P., Brady, O. J., Golding, N., Kraemer, M. U. G., Wint, G. R. W., Ray, S. E., Pigott, D. M., Shearer, F. M., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Gilbert, M., Velayudhan, R., Jones, P., Jaenisch, T., Scott, T. W., Reiner, R. C., & Hay, S. I. (2019). The current and future global distribution and population at risk of dengue. Nature Microbiology, 4(9), 1508–1515. https://doi.org/10.1038/s41564-019-0476-8
• Mohamed Shaffril, H. A., Samsuddin, S. F., & Abu Samah, A. (2021). The ABC of systematic literature review: The basic methodological guidance for beginners. Quality & Quantity, 55(4), 1319–1346. https://doi.org/10.1007/s11135-020-01059-6
• Mordecai, E. A., Cohen, J. M., Evans, M. V., Gudapati, P., Johnson, L. R., Lippi, C. A., Miazgowicz, K., Murdock, C. C., Rohr, J. R., Ryan, S. J., Savage, V., Shocket, M. S., Stewart Ibarra, A., Thomas, M. B., & Weikel, D. P. (2017). Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLOS Neglected Tropical Diseases, 11(4), Article e0005568. https://doi.org/10.1371/journal.pntd.0005568
• Morgan, J., Strode, C., & Salcedo-Sora, J. E. (2021). Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLOS Neglected Tropical Diseases, 15(3), Article e0009259. https://doi.org/10.1371/journal.pntd.0009259
• National Institute for Health and Care Excellence. (2012, September 26). Appendix G: Quality appraisal checklist – quantitative studies reporting correlations and associations: Methods for the development of NICE public health guidance (third edition). https://www.nice.org.uk/process/pmg4/chapter/appendix-g-quality-appraisal-checklist-quantitative-studies-reporting-correlations-and#checklist
• Niu, S., Liu, W., Han, S., & Fang, L. (2021). A data-sharing scheme that supports multi-keyword search for electronic medical records. PLOS ONE, 16(1), Article e0244979. https://doi.org/10.1371/journal.pone.0244979
• Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5, Article 210. https://doi.org/10.1186/s13643-016-0384-4
• Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, Article n71. https://doi.org/10.1136/bmj.n71
• Pham, H. V., Doan, H. T., Phan, T. T., & Tran Minh, N. N. (2011). Ecological factors associated with dengue fever in a central highlands Province, Vietnam. BMC Infectious Diseases, 11(1), 172. https://doi.org/10.1186/1471-2334-11-172
• Pinto, E., Coelho, M., Oliver, L., & Massad, E. (2011). The influence of climate variables on dengue in Singapore. International Journal of Environmental Health Research, 21(6), 415–426. https://doi.org/10.1080/09603123.2011.572279
• Rassa, N., McCarthy, M., Casalotti, S., Zhang, C., Wurie, F., Brown, C., & Campos-Matos, I. (2023). The impact of NHS charging regulations on healthcare access and utilisation among migrants in England: A systematic review. BMC Public Health, 23(1), Article 403. https://doi.org/10.1186/s12889-023-15230-9
• Rusli, Y., & Yushananta, P. (2020). Climate variability and dengue hemorrhagic fever in Bandar Lampung, Lampung Province, Indonesia. International Journal of Innovation, Creativity and Change, 13(2), 323–336. https://www.ijicc.net/images/vol_13/Iss_2/SC39_Rusli_2020_E_R.pdf
• Ryan, S. J., Carlson, C. J., Mordecai, E. A., & Johnson, L. R. (2019). Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases, 13(3), Article e0007213. https://doi.org/10.1371/journal.pntd.0007213
• Sajib, A. H., Akter, S., Saha, G., & Hossain, Z. (2024). Demographic-environmental effect on dengue outbreaks in 11 countries. PLOS ONE, 19(9), Article e0305854. https://doi.org/10.1371/journal.pone.0305854
• Seidahmed, O. M. E., & Eltahir, E. A. B. (2016). A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore. PLOS Neglected Tropical Diseases, 10(7), Article e0004842. https://doi.org/10.1371/journal.pntd.0004842
• Shaffril, H. A. M., Krauss, S. E., & Samsuddin, S. F. (2018). A systematic review on Asian’s farmers’ adaptation practices towards climate change. Science of The Total Environment, 644, 683–695. https://doi.org/10.1016/j.scitotenv.2018.06.349
• Singh, S., Herng, L. C., Sulaiman, L. H., Wong, S. F., Jelip, J., Mokhtar, N., Harpham, Q., Tsarouchi, G., & Gill, B. S. (2022). The effects of meteorological factors on dengue cases in Malaysia. International Journal of Environmental Research and Public Health, 19(11), Article 6449. https://doi.org/10.3390/ijerph19116449
• Su, G. L. S. (2008). Correlation of climatic factors and dengue incidence in Metro Manila, Philippines. AMBIO: A Journal of the Human Environment, 37(4), 292–294. https://doi.org/10.1579/0044-7447(2008)37[292:COCFAD]2.0.CO;2
• Sugeno, M., Kawazu, E. C., Kim, H., Banouvong, V., Pehlivan, N., Gilfillan, D., Kim, H., & Kim, Y. (2023). Association between environmental factors and dengue incidence in Lao People’s Democratic Republic: A nationwide time-series study. BMC Public Health, 23(1), Article 2348. https://doi.org/10.1186/s12889-023-17277-0
• Sutriyawan, A., Kurniati, N., Novianti, N., Farida, U., Yusanti, L., Destriani, S. N., & Saputra, M. K. F. (2024). Analysis of temperature, humidity, rainfall, and wind velocity on dengue hemorrhagic fever in Bandung municipality. Russian Journal of Infection and Immunity, 14(1), 155–162. https://doi.org/10.15789/2220-7619-AOT-2110
• Thammapalo, S., Chongsuwiwatwong, V., McNeil, D., & Geater, A. (2005). The climatic factors influencing the occurrence of dengue hemorrhagic fever in Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health, 36(1), 191–196. https://pubmed.ncbi.nlm.nih.gov/15906666/
• Thi Tuyet-Hanh, T., Nhat Cam, N., Thi Thanh Huong, L., Khanh Long, T., Mai Kien, T., Thi Kim Hanh, D., Huu Quyen, N., Nu Quy Linh, T., Rocklöv, J., Quam, M., & Van Minh, H. (2018). Climate variability and dengue hemorrhagic fever in Hanoi, Viet Nam, during 2008 to 2015. Asia Pacific Journal of Public Health, 30(6), 532–541. https://doi.org/10.1177/1010539518790143
• Thisyakorn, U., Saokaew, S., Gallagher, E., Kastner, R., Sruamsiri, R., Oliver, L., & Hanley, R. (2022). Epidemiology and costs of dengue in Thailand: A systematic literature review. PLOS Neglected Tropical Diseases, 16(12), Article e0010966. https://doi.org/10.1371/journal.pntd.0010966
• Udayanga, L., Gunathilaka, N., Iqbal, M. C. M., Lakmal, K., Amarasinghe, U. S., & Abeyewickreme, W. (2018). Comprehensive evaluation of demographic, socio-economic and other associated risk factors affecting the occurrence of dengue incidence among Colombo and Kandy Districts of Sri Lanka: A cross-sectional study. Parasites & Vectors, 11(1), Article 478. https://doi.org/10.1186/s13071-018-3060-9
• Wang, Y., Wei, Y., Li, K., Jiang, X., Li, C., Yue, Q., Zee, B. C., & Chong, K. C. (2022). Impact of extreme weather on dengue fever infection in four Asian countries: A modelling analysis. Environment International, 169, Article 107518. https://doi.org/10.1016/j.envint.2022.107518
• Wang, Y., Zhao, S., Wei, Y., Li, K., Jiang, X., Li, C., Ren, C., Yin, S., Ho, J., Ran, J., Han, L., Zee, B. C., & Chong, K. C. (2023). Impact of climate change on dengue fever epidemics in South and Southeast Asian settings: A modelling study. Infectious Disease Modelling, 8(3), 645–655. https://doi.org/10.1016/j.idm.2023.05.008
• Xuan, L. T. T., Van Hau, P., Thu, D. T., & Toan, D. T. T. (2014). Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: An ecological study. Global Health Action, 7(1), Article 23119. https://doi.org/10.3402/gha.v7.23119