Analyzing Menstruating Interval to the First Conception: An Application of CPH and AFT Models
Main Article Content
Abstract
Survival analysis techniques analyze the time-to-event data. In survival analysis, there are two essential methods: Semiparametric and parametric methods. The semiparametric Cox proportional hazard (CPH) model is frequently used to analyze demographic survival data. However, the presumption of proportional hazard (PH) is not always met in real-life data. Meanwhile, one can use parametric Accelerated Failure Time (AFT) models as an alternative when the PH assumption does not hold. The main purpose of this article is to analyze and compare the performances of the CPH model and AFT models in identifying the significant covariates affecting the menstruating interval to first conception (MIFC). In this article, three parametric AFT distributions based on Exponential, Weibull, and Log-normal distributions are used to check the performance. We have shown the violation of having a proportional hazard assumption with the help of a graphical technique and statistical test. According to the Akaike Information Criteria (AIC) and Bayesian Information Criterion (BIC), we have found that the Weibull AFT model is best suited for the data. Further in this paper, we have identified the significant factors affecting the MIFC. Analysis reveals that covariates such as age at marriage, place of residence, wealth index, mother’s education, and Mass media exposure are significant factors affecting the menstruating interval to first conception in Uttar Pradesh.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
• Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/tac.1974.1100705
• Altman, D. G., De Stavola, B. L., Love, S. B., & Stepniewska, K. A. (1995). Review of survival analyses published in cancer journals. British Journal of Cancer, 72(2), 511–518. https://doi.org/10.1038/bjc.1995.364
• Bakhshi, E., Ali Akbari Khoei, R., Azarkeivan, A., Kooshesh, M., & Biglarian, A. (2017). Survival analysis of thalassemia major patients using Cox, Gompertz proportional hazard and Weibull accelerated failure time models. Medical Journal of the Islamic Republic of Iran, 31(1), 568–571. http://dx.doi.org/10.14196/mjiri.31.97
• Carroll, K. J. (2003). On the use and utility of the Weibull model in the analysis of survival data. Controlled Clinical Trials, 24(6), 682–701. https://doi.org/10.1016/S0197-2456(03)00072-2
• Chandra-Mouli, V., Camacho, A. V., & Michaud, P. A. (2013). WHO guidelines on preventing early pregnancy and poor reproductive outcomes among adolescents in developing countries. Journal of Adolescent Health, 52(5), 517–522. https://doi.org/10.1016/j.jadohealth.2013.03.002
• Collett, D. (2023). Modelling survival data in medical research. Chapman and Hall/CRC. https://doi.org/10.1201/9781003282525
• Cox, C., Chu, H., Schneider, M. F., & Munoz, A. (2007). Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in Medicine, 26(23), 4352–4374. https://doi.org/10.1002/sim.2836
• Cox, D. R. (1972). Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
• Cox, D. R. (2018). Analysis of survival data. Chapman and Hall/CRC. https://doi.org/10.1201/9781315137438
• Drèze, J., & Murthi, M. (2001). Fertility, education, and development: Evidence from India. Population and Development Review, 27(1), 33–63. https://doi.org/10.1111/j.1728-4457.2001.00033.x
• Faruk, A. (2018). The comparison of proportional hazards and accelerated failure time models in analyzing the first birth interval survival data. Journal of Physics: Conference Series, 974, Article 012008. https://doi.org/10.1088/1742-6596/974/1/012008
• Ghimire, D. J., & Axinn, W. G. (2010). Community context, land use, and first birth. Rural Sociology, 75(3), 478–513. https://doi.org/10.1111/j.1549-0831.2010.00019.x
• Harrell, F. E., Jr., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15(4), 361–387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
• Hess, K. R. (1995). Graphical methods for assessing violations of the proportional hazards assumption in Cox regression. Statistics in Medicine, 14(15), 1707–1723. https://doi.org/10.1002/sim.4780141510
• International Institute for Population Sciences (IIPS) & ICF. (2022, March). National Family Health Survey (NFHS-5), 2019–21: India: Volume I. https://dhsprogram.com/pubs/pdf/FR375/FR375.pdf
• Kalbfleisch, J. D., & Prentice, R. L. (2011). The statistical analysis of failure time data. John Wiley & Sons.
• Kay, R., & Kinnersley, N. (2002). On the use of the accelerated failure time model as an alternative to the proportional hazards model in the treatment of time to event data: a case study in influenza. Drug Information Journal, 36(3), 571–579. https://doi.org/10.1177/009286150203600312
• Khanal, S. P., Sreenivas, V., & Acharya, S. K. (2014). Accelerated failure time models: An application in the survival of acute liver failure patients in India. International Journal of Science and Research, 3(6), 161–166. https://doi.org/10.21275/201445
• Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data (Vol. 1230). Springer. http://dx.doi.org/10.1007/b97377
• Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons. https://doi.org/10.1002/9781118033005
• Liu, E., Liu, R. Y., & Lim, K. (2023). Using the Weibull accelerated failure time regression model to predict time to health events. Applied Sciences, 13(24), Article 13041. https://doi.org/10.3390/app132413041
• Mendes, A. C., & Fard, N. (2014). Accelerated failure time models comparison to the proportional hazard model for time-dependent covariates with recurring events. International Journal of Reliability, Quality and Safety Engineering, 21(02), Article 1450010. https://doi.org/10.1142/S0218539314500107
• Moolgavkar, S. H., Chang, E. T., Watson, H. N., & Lau, E. C. (2018). An assessment of the Cox proportional hazards regression model for epidemiologic studies. Risk Analysis, 38(4), 777–794. https://doi.org/10.1111/risa.12865
• Nath, D. C., Land, K. C., & Singh, K. K. (1995). A waiting time distribution for the first conception and its application to a non-contracepting traditional society. Genus, 95–103. https://www.jstor.org/stable/29789186
• Nath, D. C., Singh, K. K., Land, K. C., & Talukdar, P. K. (1993). Age of marriage and length of the first birth interval in a traditional Indian society: Life table and hazards model analysis. Human Biology, 783–797. https://www.jstor.org/stable/41464906
• Obite, C. P., Bartholomew, D. C., Nwosu, U. I., Anyiam, K. E., & Aminu, S. A. (2021). Marriage to first birth interval in Nigeria: Analysis of the roles of social-demographic and cultural factors. SN Social Sciences, 1(5), Article 120. https://doi.org/10.1007/s43545-021-00112-x
• Orbe, J., Ferreira, E., & Núñez‐Antón, V. (2002). Comparing proportional hazards and accelerated failure time models for survival analysis. Statistics in Medicine, 21(22), 3493–3510. https://doi.org/10.1002/sim.1251
• Páez, A., & Boisjoly, G. (2022). Exploratory data analysis. In Discrete choice analysis with R (pp. 27–72). Springer. https://doi.org/10.1007/978-3-031-20719-8_2
• Qi, J. (2009). Comparison of proportional hazards and accelerated failure time models (Master’s thesis, University of Saskatchewan). HARVEST Institutional Repository. http://hdl.handle.net/10388/etd-03302009-140638
• Rahman, M., Mustafi, M., & Azad, M. (2013). Analysis of the determinants of marriage to first birth interval in Bangladesh. International Journal of Management and Sustainability, 2(12), 208–219. https://doi.org/10.18488/journal.11/2013.2.12/11.12.208.219
• Saikia, R., & Barman, M. P. (2017). A review on accelerated failure time models. International Journal of Statistics and Systems, 12(2), 311–322. https://www.ripublication.com/ijss17/ijssv12n2_14.pdf
• Schemper, M. (1992). Cox analysis of survival data with non-proportional hazard functions. Journal of the Royal Statistical Society Series D: The Statistician, 41(4), 455–465. https://doi.org/10.2307/2349009
• Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69(1), 239–241. https://doi.org/10.1093/biomet/69.1.239
• Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
• Sheps, M. C., Menken, J. A., Ridley, J. C., & Lingner, J. W. (1970). Truncation effect in closed and open birth interval data. Journal of the American Statistical Association, 65(330), 678–693. https://doi.org/10.1080/01621459.1970.10481116
• Singh, B. P., Singh, G., & Singh, K. K. (2016). Heterogeneity in waiting time to first conception in Uttar Pradesh: A parametric regression analysis. Demography India, 45(1/2), 77–88. https://iasp.ac.in/uploads/journal/006-1635845884.pdf
• Swindell, W. R. (2009). Accelerated failure time models provide a useful statistical framework for aging research. Experimental Gerontology, 44(3), 190–200. https://doi.org/10.1016/j.exger.2008.10.005
• Talwar, P. P. (1967). A note on changes in age at marriage of females and their effect on the birth rate in India. Eugenics Quarterly, 14(4), 291–295. https://doi.org/10.1080/19485565.1967.9987739
• Tripathy, M. R., Swain, P. K., Sarangi, P. K., & Pattnaik, S. S. (2022). Accelerated Failure Time Models with Applications to Endometrial Cancer Survival Data. Journal of Reliability and Statistical Studies, 723–744. https://doi.org/10.13052/jrss0974-8024.15213
• Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Statistics in Medicine, 11(14–15), 1871–1879. https://doi.org/10.1002/sim.4780111409
• Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing. Academic press.
• Wood, J. W. (2017). Dynamics of human reproduction: Biology, biometry, demography. Routledge. https://doi.org/10.4324/9780203792780
• Yadava, K. N. S., Jain, S. K., & Kumar, A. (2000). Correlates of birth intervals in rural Northern India. Genus, 56(1/2), 55–76. https://www.jstor.org/stable/29788629
• Zare, A., Hosseini, M., Mahmoodi, M., Mohammad, K., Zeraati, H., & Holakouie-Naieni, K. (2015). A comparison between accelerated failure-time and Cox proportional hazard models in analyzing the survival of gastric cancer patients. Iranian Journal of Public Health, 44(8), 1095–1102. https://ijph.tums.ac.ir/index.php/ijph/article/view/3359
• Zhang, Z. (2016). Parametric regression model for survival data: Weibull regression model as an example. Annals of Translational Medicine, 4(24), Article 484. https://doi.org/10.21037/atm.2016.08.45