Polymorbidity and Health Outcomes Among Middle-Aged and Older Adults: Evidence from the Longitudinal Ageing Study in India
Main Article Content
Abstract
Polymorbidity is the leading cause of morbidity and mortality, particularly in the aging population. The present study analyses the prevalence and explores the determinants of polymorbidity among middle-aged and older adults. The study utilizes the 2017–2018 Longitudinal Ageing Study in India (LASI 2017–2018), a national representative dataset on health conditions of people aged 45 years and above, to study the relative risk estimates. The analysis uses the multinomial logit model (MNL) with their relative risk ratios (RRR). The findings of RRR suggest that the risk of polymorbidity significantly depends on parents’ medical history, residing in a front-runner state, and consultation at healthcare centers in both middle-aged and older adults. The prevalence of severe polymorbidity is higher among well-educated individuals and rural residents. The richer household carries a lower risk of polymorbidity, and the older adults from the general caste category are at higher risk of severe polymorbidity. The findings aim to redress the problems attached to the old age population in India. The paper recommends promoting preventive and precautionary attitudes over curative attitudes through health policies by introducing a patient-oriented and disease-centered approach to healthcare provision in India.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
• Alaba, O., & Chola, L. (2013). The social determinants of multimorbidity in South Africa. International Journal for Equity in Health, 12, Article 63. https://doi.org/10.1186/1475-9276-12-63
• Banu, B., Chowdhury, S. H., Akter, N., Ara, U., Islam, K. R., Amin, M. R., & Hossain, S. M. (2022). Insights of literacy on preventive behaviors of non-communicable diseases in Bangladesh: Descriptive types of cross-sectional study among female university students. International Journal of Community Medicine and Public Health, 9(7), 2769–2775. https://doi.org/10.18203/2394-6040.ijcmph20221737
• Barve, S. S., & Joshi, S. (2019). A literature review of measurement of health literacy in India. Indian Journal of Public Health Research and Development, 10(5), 724–729. https://doi.org/10.5958/0976-5506.2019.01097.0
• Begum, A., & Hamid, S. A. (2021). Impoverishment impact of out-of-pocket payments for healthcare in rural Bangladesh: Do the regions facing different climate change risks matter? PLOS ONE, 16(6), Article e0252706. https://doi.org/10.1371/journal.pone.0252706
• Biswas, T., Islam, S., Linton, N., & Rawal, L. B. (2016). Socio-economic inequality of chronic non-communicable diseases in Bangladesh. PLOS ONE, 11(11), Article e0167140. https://doi.org/10.1371/journal.pone.0167140
• Brinda, E. M., Kowal, P., Attermann, J., & Enemark, U. (2015). Health service use, out-of-pocket payments and catastrophic health expenditure among older people in India: The WHO study on global AGEing and adult health (SAGE). Journal of Epidemiology and Community Health, 69(5), 489–494. https://doi.org/10.1136/jech-2014-204960
• Carminati, L. (2020). Behavioural economics and human decision making: Instances from the Health Care System. Health Policy, 124(6), 659–664. https://doi.org/10.1016/j.healthpol.2020.03.012
• Chakrabarti, A., & Shankar, A. (2015). Determinants of health insurance penetration in India: An empirical analysis. Oxford Development Studies, 43(3), 379–401. https://doi.org/10.1080/13600818.2015.1057116
• Chatterjee, C., Nayak, N. C., & Mahakud, J. (2023). Factors affecting the incidence of health insurance penetration among elderly: Evidence from India. Journal of Public Affairs, 23(1), Article e2848. https://doi.org/10.1002/pa.2848
• Chung, R. Y., Mercer, S., Lai, F. T. T., Yip, B. H. K., Wong, M. C. S., & Wong, S. Y. S. (2015). Socioeconomic determinants of multimorbidity: A population-based household survey of Hong Kong Chinese. PLOS ONE, 10(10), Article e0140040. https://doi.org/10.1371/journal.pone.0140040
• Damsere-Derry, J., Adanu, E. K., Ojo, T. K., & Sam, E. F. (2021). Injury-severity analysis of intercity bus crashes in Ghana: A random parameters multinomial logit with heterogeneity in means and variances approach. Accident Analysis and Prevention, 160, Article 106323. https://doi.org/10.1016/j.aap.2021.106323
• EH News Bureau. (2022, December 29). Envisioning age-friendly health systems for India: A health policy imperative! Express Healthcare. https://www.expresshealthcare.in/news/envisioning-age-friendly-health-systems-for-india-a-health-policy-imperative/437496/
• Foucade, A. La, Davis, G., Baboolal, N., Bethelmie, D., Laptiste, C., Ali-Sisbane, H., & Theodore, K. (2020). The socio-economic determinants of multimorbidity among the elderly population in Trinidad and Tobago. PLOS ONE, 15(9), Article e0237307. https://doi.org/10.1371/journal.pone.0237307
• Gomes, F., Schuetz, P., Bounoure, L., Austin, P., Ballesteros-Pomar, M., Cederholm, T., Fletcher, J., Laviano, A., Norman, K., Poulia, K. A., Ravasco, P., Schneider, S. M., Stanga, Z., Weekes, C. E., & Bischoff, S. C. (2018). ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clinical Nutrition, 37(1), 336–353. https://doi.org/10.1016/j.clnu.2017.06.025
• Greene, W. H. (2012). Econometric analysis (7th ed.). Pearson Education.
• Gupta, I., & Ranjan, A. (2019). Public expenditure on Non-Communicable Diseases & Injuries in India: A budget-based analysis. PLOS ONE, 14(9), Article e0222086. https://doi.org/10.1371/journal.pone.0222086
• Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., Suzuki, A. K., & Kattan, M. W. (2020). The multinomial logistic regression model for predicting the discharge status after liver transplantation: Estimation and diagnostics analysis. Journal of Applied Statistics, 47(12), 2159–2177. https://doi.org/10.1080/02664763.2019.1706725
• Hinkaew, B., & Nuntaboot, K. (2024). Community care strategies for older adults facing hardships: Insights from Central Thailand. Journal of Population and Social Studies, 33, 45–69. https://doi.org/10.25133/JPSSV332025.003
• Holmes, A. M., & Deb, P. (2003). The effect of chronic illness on the psychological health of family members. The Journal of Mental Health Policy and Economics, 6(1), 13–22. http://www.icmpe.org/test1/journal/issues/v6pdf/6-013_text.pdf
• Ingram, E., Ledden, S., Beardon, S., Gomes, M., Hogarth, S., Mcdonald, H., Osborn, D. P., & Sheringham, J. (2021). Household and area-level social determinants of multimorbidity: A systematic review. Journal of Epidemiology and Community Health, 75(3), 232–241. https://doi.org/10.1136/jech-2020-214691
• Lee, S. B., Oh, J. H., Park, J. H., Choi, S. P., & Wee, J. H. (2018). Differences in youngest-old, middle-old, and oldest-old patients who visit the emergency department. Clinical and Experimental Emergency Medicine, 5(4), 249–255. https://doi.org/10.15441/ceem.17.261
• Levy, H., & Janke, A. (2016). Health literacy and access to care. Journal of Health Communication, 21, 43–50. https://doi.org/10.1080/10810730.2015.1131776
• Lovrić, B., Placento, H., Farčić, N., Lipič Baligač, M., Mikšić, Š., Mamić, M., Jovanović, T., Vidić, H., Karabatić, S., Cviljević, S., Zibar, L., Vukoja, I., & Barać, I. (2022). Association between health literacy and prevalence of obesity, arterial hypertension, and diabetes mellitus. International Journal of Environmental Research and Public Health, 19(15), Article 9002. https://doi.org/10.3390/ijerph19159002
• Marengoni, A., Angleman, S., Melis, R., Mangialasche, F., Karp, A., Garmen, A., Meinow, B., & Fratiglioni, L. (2011). Aging with multimorbidity: A systematic review of the literature. Ageing Research Reviews, 10, 430–439. https://doi.org/10.1016/j.arr.2011.03.003
• Menon, G. R., Yadav, J., & John, D. (2022). Burden of non-communicable diseases and its associated economic costs in India. Social Sciences and Humanities Open, 5(1), Article 100256. https://doi.org/10.1016/j.ssaho.2022.100256
• Mohanty, P. C., & Taneja, P. (2021, April 18). Importance of behavioural economics during Covid. The Pioneer. https://www.dailypioneer.com/2021/sunday-edition/importance-of-behavioural-economics-during-covid.html
• Mohanty, S. K., Chauhan, R. K., Mazumdar, S., & Srivastava, A. (2014). Out-of-pocket expenditure on health care among elderly and non-elderly households in India. Social Indicators Research, 115(3), 1137–1157. https://doi.org/10.1007/s11205-013-0261-7
• Nishida, C., Barba, C., Cavalli-Sforza, T., Cutter, J., Deurenberg, P., Darnton-Hill, I., Deurenberg-Yap, M., Gill, T., James, P., Ko, G., Kosulwat, V., Kumanyika, S., Kurpad, A., Mascie-Taylor, N., Moon, H. K., Nakadomo, F., Nishida, C., Noor, M. I., Reddy, K. S., … Zimmet, P. (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The Lancet, 363(9403), 157–163. https://doi.org/10.1016/S0140-6736(03)15268-3
• Noor, S., Isa, F. M., Hossain, M. S., & Shafiq, A. (2020). Ageing care centers: Mediating role of quality care and proactive environment. Journal of Population and Social Studies, 28(4), 324–347. https://doi.org/10.25133/jpssv28n4.022
• Nutbeam, D., & Lloyd, J. E. (2021). Understanding and responding to health literacy as a social determinant of health. Annual Review of Public Health, 42, 159–173. https://doi.org/10.1146/annurev-publhealth-052620-010843
• Pati, S., Swain, S., Knottnerus, J. A., Metsemakers, J. F. M., & Van Den Akker, M. (2020). Magnitude and determinants of multimorbidity and health care utilization among patients attending public versus private primary care: A cross-sectional study from Odisha, India. International Journal for Equity in Health, 19(1), Article 57. https://doi.org/10.1186/s12939-020-01170-y
• Press Information Bureau (PIB). (2022, July 26). Schemes for senior citizens. Government of India. https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1844991
• Rasul, F. B., Kalmus, O., Sarker, M., Adib, H. I., Hossain, M. S., Hasan, M. Z., Brenner, S., Nazneen, S., Islam, M. N., & De Allegri, M. (2019). Determinants of health seeking behavior for chronic non-communicable diseases and related out-of-pocket expenditure: Results from a cross-sectional survey in northern Bangladesh. Journal of Health, Population and Nutrition, 38(1), Article 48. https://doi.org/10.1186/s41043-019-0195-z
• Reininger, B. M., Wang, J., Fisher-Hoch, S. P., Boutte, A., Vatcheva, K., & McCormick, J. B. (2015). Non-communicable diseases and preventive health behaviors: A comparison of Hispanics nationally and those living along the US-Mexico border Health behavior, health promotion and society. BMC Public Health, 15(1), Article 564. https://doi.org/10.1186/s12889-015-1850-y
• Sangar, S., Dutt, V., & Thakur, R. (2019). Comparative assessment of economic burden of disease in relation to out-of-pocket expenditure. Frontiers in Public Health, 7, Article 9. https://doi.org/10.3389/fpubh.2019.00009
• Sapkota, B. P., Baral, K. P., Rehfuess, E. A., Parhofer, K. G., & Berger, U. (2023). Effects of age on non-communicable disease risk factors among Nepalese adults. PLOS ONE, 18(6), Article e0281028. https://doi.org/10.1371/journal.pone.0281028
• Shang, X., Peng, W., Wu, J., He, M., & Zhang, L. (2020). Leading determinants for multimorbidity in middle-aged Australian men and women: A nine-year follow-up cohort study. Preventive Medicine, 141, Article 106260. https://doi.org/10.1016/j.ypmed.2020.106260
• Siegel, K. R., Patel, S. A., & Ali, M. K. (2014). Non-communicable diseases in South Asia: Contemporary perspectives. British Medical Bulletin, 111, 31–44. https://doi.org/10.1093/bmb/ldu018
• Singer, L., Green, M., Rowe, F., Ben-Shlomo, Y., & Morrissey, K. (2019). Social determinants of multimorbidity and multiple functional limitations among the ageing population of England, 2002–2015. SSM - Population Health, 8, Article 100413. https://doi.org/10.1016/j.ssmph.2019.100413
• Solar, O., & Irwin, A. (2010, July 13). A conceptual framework for action on the social determinants of health: Social determinants of health discussion paper 2 (Policy and Practice). World Health Organization. https://www.who.int/publications/i/item/9789241500852
• Sum, G., Hone, T., Atun, R., Millett, C., Suhrcke, M., Mahal, A., Choon-Huat Koh, G., & Tayu Lee, J. (2018). Multimorbidity and out-of-pocket expenditure on medicines: A systematic review. BMJ Global Health, 3, Article e000505. https://doi.org/10.1136/bmjgh-2017-000505
• Tugwell, P., & Knottnerus, J. A. (2019). Multimorbidity and comorbidity are now separate MESH headings. Journal of Clinical Epidemiology, 105, vi–viii. https://doi.org/10.1016/j.jclinepi.2018.11.019
• van Bussel, B., Pijpers, E., Ferreira, I., Castermans, P., & Nieuwenhuijzen Kruseman, A. (2007). Polymorbidity in diabetes in older people: Consequences for care and vocational training. Postgradguate Medical Journal, 83(96), 763–767. https://doi.org/10.1136/pgmj.2007.062356
• Vathesatogkit, P., David Batty, G., & Woodward, M. (2014). Socioeconomic disadvantage and disease-specific mortality in Asia: Systematic review with meta-analysis of population-based cohort studies. Journal of Epidemiology and Community Health, 68, 375–383. https://doi.org/10.1136/jech
• Wang, Q., Fu, A. Z., Brenner, S., Kalmus, O., Banda, H. T., & Allegri, D. (2015). Out-of-Pocket expenditure on chronic non-communicable diseases in Sub-Saharan Africa: The case of Rural Malawi. PLOS ONE, 10(1), Article e116897. https://doi.org/10.1371/journal.pone.0116897
• World Health Organization. (2023, September 16). Noncommunicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
• Wu, N., Xie, X., Cai, M., Han, Y., & Wu, S. (2023). Trends in health service needs, utilization, and non-communicable chronic diseases burden of older adults in China: Evidence from the 1993 to 2018 National Health Service Survey. International Journal for Equity in Health, 22(1), Article 169. https://doi.org/10.1186/s12939-023-01983-7
• Yadav, M. K., & Mohanty, P. C. (2021). Determinants of choice of health insurance: Empirical evidence from responses of Indian households. International Journal of Health Planning and Management, 36(5), 1809–1829. https://doi.org/10.1002/hpm.3267
• Yousefi, M., Arani, A. A., Sahabi, B., Kazemnejad, A., & Fazaeli, S. (2014). Household health costs: Direct, indirect, and intangible. Iranian Journal of Public Health, 43(2), 202–209. https://ijph.tums.ac.ir/index.php/ijph/article/view/4227
• Zimmerman, M. S., & Shaw, G. (2020). Health information seeking behaviour: A concept analysis. Health Information and Libraries Journal, 37(3), 173–191. https://doi.org/10.1111/hir.12287