Socio-Spatial Analysis of Poverty: A Comprehensive Study on Integrating Multidimensional Poverty Indices with Geographic Conditions in Krucil District, Probolinggo, Indonesia
Main Article Content
Abstract
The role of geography in population studies is represented by the utilization of space in studying social issues. The study explores the intersection of geography and population studies by employing spatial analysis to examine social problems, particularly poverty. Focusing on the Krucil District in Probolinggo Regency, East Java, Indonesia, the research integrates multidimensional indicators of well-being to provide a comprehensive understanding of poverty. The Multidimensional Poverty Index (MPI) is a comprehensive poverty measurement tool at the individual and household levels. The urgent integration of spatial analysis into social sciences is essential for addressing the significant poverty level as a socioeconomic problem. Poverty measurement was analyzed using the Alkire-Foster (AF) method with primary data from 132 households across 11 sub-districts. Results reveal the MPI score of 0.19, indicating significant poverty levels, with the health dimension most affected. Moran’s index of -0.134, indicating no spatial autocorrelation (p value > alpha, .574 > 0.05), suggesting that high multidimensional poverty areas are surrounded by low poverty areas and vice versa, with geographic, spatial, and physical conditions significantly contributing to multidimensional poverty. These findings suggest that poverty alleviation efforts commence with Seneng Village, which has been designated as a pilot project. This approach will allow for the testing and refinement of strategies in a controlled environment, providing valuable insights and data that can be applied to broader initiatives.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
• Adji, A., Hidayat, T., Tuhiman, H., Kurniawan, S., & Maulana, A. (2020, January). Measurement of poverty line in Indonesia: Theoretical review and proposed improvements. (TNP2K Working Paper No. 48-e-2020). https://tnp2k.go.id/downloads/measurement-of-poverty-line-in-indonesia-theoretical-review-and-proposed-improvements
• Aidha, C. N., Ningrum, D. R., Armintasari, F., Herawati, Ramdlaningrum, H., Sagala, M., Thaariq, R. M., & Kartika, W. (2020, April). Indeks kemiskinan multidimensi Indonesia, 2015-2018 [Indonesia’s Multidimensional Poverty Index, 2015-2018]. https://repository.theprakarsa.org/media/publications/301093-indeks-kemiskinan-multidimensi-indonesia-4b43d5c1.pdf
• Ainistikmalia, N., Kharisma, B., & Budiono. (2022). Analisis kemiskinan multidimensi dan ketahanan pangan Provinsi Kalimantan Utara [Multidimensional poverty analysis and food security in North Kalimantan Province]. Jurnal Ekonomi dan Pembangunan Indonesia, 22(1), Article 5. https://doi.org/10.21002/jepi.2022.05
• Aiyar, A., & Sunder, N. (2024). Health insurance and child mortality: Evidence from India. Health Economics, 33(5), 870–893. https://doi.org/10.1002/hec.4798
• Alkire, S., & Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7–8), 476–487. https://doi.org/10.1016/j.jpubeco.2010.11.006
• Alkire, S., Foster, J. E., Seth, S., Santos, M. E., Roche, J. M., & Ballon, P. (2015, January). Multidimensional poverty measurement and analysis: Chapter 5 – The Alkire-Foster counting methodology (OPHI Working Paper No. 86). Oxford Poverty and Human Development Initiative. https://ophi.org.uk/sites/default/files/OPHIWP086_Ch5.pdf
• Alkire, S., & Santos, M. E. (2014). Measuring acute poverty in the developing world: Robustness and scope of the Multidimensional Poverty Index. World Development, 59, 251–274. https://doi.org/10.1016/j.worlddev.2014.01.026
• Aprilia, A. Y., Pratita, A. T. K., Tuslinah, L., Ningsih, W., Fitriyani, N., Nurazizah, A. S., & Huda, R. S. (2022). Upaya pencegahan stunting dengan perbaikan pola makan dan pola hidup sehat [Efforts to prevent stunting through improving dietary patterns and healthy lifestyles]. Perkumpulan Rumah Cemerlang Indonesia.
• Ari, I. R. D., Hariyani, S., & Waloejo, B. S. (2021). Spatial modelling of multidimensional poverty in rural area: Evidence from Malang Regency, Indonesia. Journal of Socioeconomics and Development, 4(2), 198–211. https://doi.org/10.31328/jsed.v4i2.2245
• Bartley, M. (2016). Health inequality: An introduction to concepts, theories, and methods (2nd ed.). Polity Press.
• Batty, S., & Orton, M. (2018). An agenda for fixing the social security/welfare benefits system. Journal of Poverty and Social Justice, 26(2), 291–295. https://doi.org/10.1332/175982718X15244988914331
• Bosch, C., Hommann, K., Rubio, G. M., Sadoff, C., & Travers, L. (2001, April). Water, sanitation and poverty. World Bank. https://ftp.unpad.ac.id/orari/library/library-ref-ind/ref-ind-1/application/poverty-reduction/prsp/SourceBook/Wat0427.pdf
• BPS-Statistics Indonesia. (2011, January 27). Penjelasan data kemiskinan [Explanation of poverty data]. https://www.bps.go.id/id/pressrelease/2011/01/27/884/penjelasan-data-kemiskinan.html
• BPS-Statistics Indonesia. (2022). Indeks kemiskinan multidimensi: Metadata indikator [Multidimensional poverty index: Indicator metadata]. https://sirusa.web.bps.go.id/metadata/indikator/31482
• Cabinet Secretariat of the Republic of Indonesia. (2021, September 30). Inilah arahan wapres untuk tanggulangi kemiskinan ekstren di lima kabupaten di Jatim [This is the Vice President's directive to tackle extreme poverty in five districts in East Java]. https://setkab.go.id/inilah-arahan-wapres-untuk-tanggulangi-kemiskinan-ekstrem-di-lima-kabupaten-di-jatim/
• Chzhen, Y., Bruckauf, Z., & Toczydlowska, E. (2018). Monitoring progress towards sustainable development: Multidimensional child poverty in the European Union. Journal of Poverty and Social Justice, 26(2), 129–150. https://doi.org/10.1332/175982718X15154249173514
• Deffinika, I., Pramono, W. T., Khairunnisa, B. A., Kennedy, B. A., Mitsalina, N. A., & Daniar, Y. (2020). Maternal health-care access and utilization in Sidoluhur, Lawang. KnE Social Sciences, 4(10), 161–169. https://doi.org/10.18502/kss.v4i10.7403
• Deffinika, I., Putri, I. W., & Angin, K. B. (2022). Higher education and training towards global competitiveness and human development in Indonesia. Geojournal of Tourism and Geosites, 40(1), 1280–1288. https://doi.org/10.30892/gtg.38436-770
• Dieye, A. M. (2019, July 18). Leaving no one behind: Using a multidimensional approach to eradicate poverty and monitor SDG progress at the national level. UNDP News Centre. https://www.undp.org/speeches/leaving-no-one-behind-using-multidimensional-approach-eradicate-poverty-and-monitor-sdg-progress-national-level
• Dirksen, J., & Alkire, S. (2021). Children and multidimensional poverty: Four measurement strategies. Sustainability, 13(16), Article 9108. https://doi.org/10.3390/su13169108
• Dong, Y., Jin, G., Deng, X., & Wu, F. (2021). Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography. Journal of Geographical Sciences, 31(1), 130–148. https://doi.org/10.1007/s11442-021-1836-x
• Farahani, H. A., Rahiminezhad, A., Same, L., & Immannezhad, K. (2010). A comparison of Partial Least Squares (PLS) and Ordinary Least Squares (OLS) regressions in predicting of couples mental health based on their communicational patterns. Procedia - Social and Behavioral Sciences, 5, 1459–1463. https://doi.org/10.1016/j.sbspro.2010.07.308
• Fuady, M. R. F., Fuady, M., & Aulia, F. (2021). Kemiskinan multi dimensi dan indeks pembangunan manusia di Indonesia [Multidimensional poverty and human development index in Indonesia]. Tataloka, 23(4), 575–582. https://ejournal2.undip.ac.id/index.php/tataloka/article/view/10351
• Geospatial Information Agency. (2024). Ina-Geoportal: Portal informasi geospasial Indonesia [Ina-Geoportal: Indonesia geospatial information portal]. https://tanahair.indonesia.go.id/portal-web/
• Ghosh, P., Hossain, M., & Alam, A. (2022). Water, Sanitation, and Hygiene (WASH) poverty in India: A district‐level geospatial assessment. Regional Science Policy & Practice, 14(2), 396–416. https://doi.org/10.1111/rsp3.12468
• Great Britain Department for International Development (DFID). (2008). Growth: Building jobs and prosperity in developing countries. Department for International Development.
• Jha, D. K., & Tripathi, V. K. (2023). Unveiling the complexity of urban poverty: Exploring spatial and multidimensional deprivation in slums of Varanasi, India. GeoJournal, 88(6), 6561–6575. https://doi.org/10.1007/s10708-023-10986-4
• Khaliq, A., & Upsri, B. (2017). Kemiskinan multidimensi dan perlindungan sosial [Multidimensional poverty and social protection]. Jurnal Manajemen, 13(2), 85–191. http://dx.doi.org/10.30813/bmj.v13i2.921
• Khan, S. U., & Sloboda, B. W. (2023). Spatial analysis of multidimensional poverty in Pakistan: Do income and poverty score of neighboring regions matter? GeoJournal, 88(3), 2823–2849. https://doi.org/10.1007/s10708-022-10781-7
• Kurniawan, K. F. B., & Kuncoro, M. (2016). The impact of poverty alleviation programs on poverty at district level in Indonesia: Case study of Sleman, 2008-2012. Journal of Indonesian Applied Economics, 6(1), 139–141. https://doi.org/10.21776/ub.jiae.2016.006.01.5
• Lanau, A., Mack, J., & Nandy, S. (2020). Including services in multidimensional poverty measurement for SDGs: Modifications to the consensual approach. Journal of Poverty and Social Justice, 28(2), 149–168. https://doi.org/10.1332/175982720X15850580703755
• Lange, M. (2021). Multidimensional poverty in Kolkata’s slums: Towards data driven decision making in a medium-sized NGO. Journal of Poverty and Social Justice, 29(1), 121–130. https://doi.org/10.1332/175982720X16034770581665
• Li, Y., Jin, Q., & Li, A. (2022). Understanding the multidimensional poverty in South Asia. Journal of Geographical Sciences, 32(10), 2053–2068. https://doi.org/10.1007/s11442-022-2036-z
• Liu, W., Li, J., & Zhao, R. (2020). Rural public expenditure and poverty alleviation in China: A spatial econometric analysis. Journal of Agricultural Science, 12(6), 46–56. https://doi.org/10.5539/jas.v12n6p46
• Lorant, V., Deliège, D., Eaton, W., Robert, A., Philippot, P., & Ansseau, M. (2003). Socioeconomic inequalities in depression: A meta-analysis. American Journal of Epidemiology, 157(2), 98–112. https://doi.org/10.1093/aje/kwf182
• Luo, X., Zhang, Z., Wan, Q., & Jin, G. (2021). Spatial poverty traps in rural China: Aggregation, persistence, and reinforcement. Area, 53(1), 56–66. https://doi.org/10.1111/area.12643
• Majid, M. R., Jaffar, A. R., Man, N. C., Vaziri, M., & Sulemana, M. (2016). Mapping poverty hot spots in Peninsular Malaysia using spatial autocorrelation analysis. Planning Malaysia, 4(Special Issue 4), 1–16. https://doi.org/10.21837/pmjournal.v14.i4.144
• Marmot, M. (2005). Social determinants of health inequalities. The Lancet, 365(9464), 1099–1104. https://doi.org/10.1016/S0140-6736(05)71146-6
• Ministry of Finance of the Republic of Indonesia. (2018). Pembangunan SDM salah satu kunci perangi kemiskinan dan kesenjangan [Human resource development is one of the keys to combating poverty and inequality]. Publikasi Berita. https://www.kemenkeu.go.id/publikasi/berita/pembangunan-sdm-salah-satu-kunci-perangi-kemiskinan-dan-kesenjangan/
• Mujiono. (2021, November 10). Kementerian PUPR kunjungi desa-desa prioritas penanganan kemiskinan ekstrem [Ministry of Public Works and Public Housing visits priority villages for handling extreme poverty]. Kemasyarakatan. https://probolinggokab.go.id/kementerian-pupr-kunjungi-desa-desa-prioritas-penanganan-kemiskinan-ekstrem/
• Oshio, T., & Urakawa, K. (2014). The association between perceived income inequality and subjective well-being: Evidence from a social survey in Japan. Social Indicators Research, 116(3), 755–770. https://doi.org/10.1007/s11205-013-0323-x
• Rinner, C. (2018). Spatial decision support. In J. P. Wilson (Ed.), The Geographic Information Science & Technology Body of Knowledge. https://doi.org/10.22224/gistbok/2018.2.1
• Singh, R. (2012). Human development index and poverty linkages. International Journals of Marketing and Technology, 2(5), 219–230. https://www.indianjournals.com/ijor.aspx?target=ijor:ijmt&volume=2&issue=5&article=014
• Swastika, D. K., & Supriyatna, Y. (2016). The characteristics of poverty and its alleviation in Indonesia. Forum Penelitian Agro Ekonomi, 26(2), 103–115. https://epublikasi.pertanian.go.id/berkala/fae/article/view/1290
• TNP2K. (2021, September 30). Kemiskinan ekstrem, wapres kunjungan kerja ke Jawa Timur [Extreme poverty, Vice President's working visit to East Java]. http://www.tnp2k.go.id/articles/tindaklanjuti-pengurangan-kemiskinan-ekstrem-wapres-kunjungan-kerja-ke-jawa-timur
• Treanor, M. C. (2020). Education. In Child poverty (pp. 77–96). Policy Press. https://doi.org/10.51952/9781447334675.ch005
• Turriago-Hoyos, Á., Martínez Mateus, W. A., & Thoene, U. (2020). Spatial analysis of multidimensional poverty in Colombia: Applications of the Unsatisfied Basic Needs (UBN) Index. Cogent Economics and Finance, 8(1), Article 1837441. https://doi.org/10.1080/23322039.2020.1837441
• UNICEF. (2022, October 26). Goal 1: No poverty. UNICEF DATA. https://data.unicef.org/sdgs/goal-1-no-poverty/
• United Nations. (2020, January). World Social Report 2020: Inequality in a rapidly changing world. United Nations Department of Economic and Social Affairs. https://desapublications.un.org/publications/world-social-report-2020-inequality-rapidly-changing-world
• Wang, B., Luo, Q., Chen, G., Zhang, Z., & Jin, P. (2022). Differences and dynamics of multidimensional poverty in rural China from multiple perspectives analysis. Journal of Geographical Sciences, 32(7), 1383–1404. https://doi.org/10.1007/s11442-022-2002-9
• World Bank Group. (2022, October 15). Poverty overview. https://www.worldbank.org/en/topic/poverty/overview#1
• Zimmerman, F. J., & Katon, W. (2005). Socioeconomic status, depression disparities, and financial strain: What lies behind the income-depression relationship? Health Economics, 14(12), 1197–1215. https://doi.org/10.1002/hec.1011