Solution in Capacity Improvement for Thai Citizen Coping Fake News

Main Article Content

Nuttakrit Powintara

Abstract

          This research aims to find solution for coping fake news problem. After analyzing 408 observations sampling from citizen in the area of (1) inner Bangkok (2) middle Bangkok and (3) outer Bangkok via ordinary least squares model, this research found that there are three independent variables affecting to level of coping fake news (as dependent variable) including (i) collaboration among sectors (e.g. public section private sector, civil society, and etc.) (ii) community gathering for local against fake news  and (iii) education development in regard to fake news coping (especially, starting since elementary school). Interestingly, comparing among independent variables, community gathering for local against fake news has the highest standardized beta coefficient which means this variable has the most impact on dependent variable, according to OLS regression model.


Keywords: fake news, management, public sector, private sector, citizen

Article Details

Section
Considering ideas

References

ภาษาไทย

สำนักงานพัฒนารัฐบาลดิจิทัล (องค์การมหาชน) (สพร.). 2563. AI Government Framework : กรอบการ ทำงานปัญญาประดิษฐ์ภาครัฐ.

https://dgti.dga.or.th/e-books-ai-government-framework/

ภาษาอังกฤษ

Alcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2),

-236. Doe: 10.1257/jep.31.2.211

Chang. C. (2021). Fake News: Audience Perceptions and Concerted Coping Strategies. Digital Journalism. 9(5), 636 – 659.

https://doi.org/10.1080/21670811.2021.1923403

Hopp, T. (2022). Fake news self-efficacy, fake news identification, and content sharing on Facebook. Journal of Information

Technology & Politics, 19(2), 229 – 252. https://doi.org/10.1080/19331681.2021.1962778

Meel, P. & Vishwakarma, D.K. (2020). Fake news, rumor, information pollution in social media and web : A contemporary

survey of state-of-the-arts, challenges and opportunities. Expert Systems With Applications, 153, 1 – 26.

https://doi.org/10.1016/j.eswa.2019.112986

Giselle Rampersad & Turki Althiyabi (2020) Fake news : Acceptance by demographics and culture on social media, Journal

of Information Technology & Politics, 17:1, 1-11, DOI: 10.1080/19331681.2019.1686676

Rubin, V.L., Chen, Y. & Conroy, N.K. (2015). Deception detection for news: Three types of fakes. Computer Science. 52(1),

-4. https://doi.org/10.1002/pra2.2015.145052010083

Silva, C.M., Fontes, R.S.& Junior, M.C. (2021). Intelligent Fake News Detection: A Systematic Mapping. Journal of Applied

Security Research. 16(2), 168 – 189. https://doi.org/10.1080/19361610.2020.1761224

Uwalaka, T., Nwala, B. & Chinedu, A.C. (2021). Social media, fake news and fake COVID-19 cure in Nigeria. Journal of African

Media Studies. 13(3), 435 – 449. https://doi.org/10.1386/jams_00058_1.

Van Duyn, E., & Collier, J. (2019). Priming and fake news : The effects of elite discourse on evaluations of news media. Mass

Communication & Society, 22(1), 29-48. Doe: 10.1080/15205436.2018.1511807.

Vasu, N., Ang, B., Teo, T., Jayakumar, M.F. & Ahuja, J. (2018). Fake News : National Security in the Post-Truth Era.

S.Rajaratnam School of