Spatial and Temporal Analysis of Summer Rainfall Characteristics in Upper Northeastern Thailand Using Weather Radar Data

Authors

  • Nawin Sermsook Department of Geography, Faculty of Arts, Chulalongkorn University

Keywords:

Weather Radar, Thunderstorm, Summer Thunderstorm, upper northeastern region, severe weather

Abstract

This research aims to investigate and analyze spatial and temporal characteristics of daily rainfall which include rainfall amount, proportion of areas with heavy (35-90 mm/day) and extreme (>90 mm/day) rainfall intensity, numbers of extreme rainfall clusters, average size of extreme rainfall clusters, and orientation of extreme rainfall areas in the upper northeastern region of Thailand during the summer season (March to May) from 2017 to 2020. Rainfall data were obtained from Sakon Nakhon weather radar station. Radar reflectivity was converted to hourly rainfall amount using Z-R relationship for northeastern Thailand.    It was found that the spatially variable bias correction method, using rainfall observations at five ground stations, produces more accurate results compared to the mean field method (RMSE = 2.20 mm/hour). The results showed that all rainfall characteristics tended to increase from March to May. During the pre-monsoon period, especially in March, daily rainfall amount in the study area was quite low (1.59 – 4.14 mm/day). Heavy and extreme rainfall occurred in a few small-size clusters. In April, average rainfall amount and maximum rainfall became higher than other periods (718.13 – 800.82 mm). Moreover, proportion of heavy and extreme rainfall areas increased from March and showed relatively large variability over 4 years (SD of average daily rainfall = 5.16 mm/day). These findings indicated a likelihood of severe summer thunderstorms to occur in this period. In May, rainfall amounts and a number of extreme rainfall clusters increased (371.63 square kilometers per day on average) as a result of widespread rainfall over the study area due to southwest monsoon influences and low-pressure troughs (ITCZ). The second half of May exhibited the heaviest rainfall period with a large number of extreme rainfall clusters or a few clusters with extensive spatial coverage.

References

ภาษาไทย

Muntana Brikshavana & Nongnat Ouprasitwong มันทนา พฤกษะวัน และนงค์นาถ อู่ประสิทธ์วงศ์. (2002). Rupbaep khong fon lae unhaphum nai prathet Thai nai pi ENSO lae kwamsampan kup datchani kwamphanprae khong rabop akat nai sik lok tai lae unhaphum phiwnamtale nai mahasamut Pacific khet ron รูปแบบของฝนและอุณหภูมิในประเทศไทยในปีเอนโซ่ และความสัมพันธ์กับดัชนีความผันแปรของระบบอากาศในซีกโลกใต้ และอุณหภูมิผิวน้ำทะเลในมหาสมุทรแปซิฟิกเขตร้อน [Rainfall and temperature patterns in Thailand during ENSO events and links with the Southern Oscillation Index and sea surface temperature in the Tropical Pacific Ocean]. Thai Meteorological Department.

Nattapon Mahavik นัฐพล มหาวิค. (2022). Radar truat akat thang utuniyom witthaya เรดาร์ตรวจอากาศทางอุตุนิยมวิทยา [Weather radar for meteorology]. Chulalongkorn University Press.

Northeastern Meteorological Center (Lower Part) ศูนย์อุตุนิยมวิทยาภาคตะวันออกเฉียงเหนือตอนล่าง. (n.d.). OngKwamru rueang radar truat akat phuea prachachon องค์ความรู้เรื่องเรดาร์ตรวจอากาศเพื่อประชาชน [Knowledge about radar for the public]. Retrieved February 8, 2024, from https://ubonmet.tmd.go.th/files/KM-base/KM-2560-3.pdf

Prin Lorpittayakorn ปริญ หล่อพิทยากร. (2017). Itthipol khong El Nino thi mi phol tor karn prae krachai khong pariman fon nai chuang ruedu fon lae ruedu laeng boriwen phak tawan-oak khong prathet Thai อิทธิพลของเอลนีโญที่มีผลต่อการแพร่กระจายของปริมาณฝนในช่วงฤดูฝนและฤดูแล้งบริเวณภาคตะวันออกของประเทศไทย [The influence of El Nino on rainfall distribution during wet and dry seasons in Eastern Thailand]. Warasarn Wittayasart Lae Technology วารสารวิทยาศาสตร์และเทคโนโลยี [Thai Science and Technology Journal], 25(6), 944-959. https://li01.tci-thaijo.org/index.php/tstj/article/view/86490/83317

Suwapan Nilayon สุวพันธ์ นิลายน. (2000). Utuniyom witthaya อุตุนิยมวิทยา [Meteorology]. Chulalongkorn University Press.

Thai Meteorological Department กรมอุตุนิยมวิทยา. (n.d.-a). Gain akat เกณฑ์อากาศ [Weather criteria]. Retrieved May 23, 2024, from https://www.tmd.go.th/info/เกณฑ์อากาศ

Thai Meteorological Department กรมอุตุนิยมวิทยา. (n.d.-b). Pai thammachat nai prathet Thai ภัยธรรมชาติในประเทศไทย [Natural Disaster in Thailand]. Retrieved February 18, 2024, from https://www.tmd.go.th/media/_info/risk.pdf

ภาษาต่างประเทศ

Austin, P. M. (1987). Relation between measured radar reflectivity and surface rainfall. Monthly Weather Review, 115(5), 1053-1070. https://doi.org/https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2

Camargo, L. J. R., Vargas, E. G., & Perdomo, C. C. A. (2018). A look to different approaches for the detection and correction of anomalous propagation in meteorological radars for its application in Colombia. International Journal of Applied Engineering Research, 13(13), 11272-11278. https://www.ripublication.com/ijaer18/ijaerv13n13_40.pdf

Chantraket, P., Detyothin, C., & Suknarin, A. (2013). Radar reflectivity derived rain-storm characteristics over Northern Thailand. EnvironmentAsia, 6(2), 24-33. https://doi.nrct.go.th/ListDoi/listDetail?Resolve_DOI=10.14456/ea.2013.14

Compliew, S., & Kwuanyuen, B. (2007). Hydrologic models with radar precipitation data input. Kasetsart Journal : Natural Science, 41(4), 782-791. https://li01.tci-thaijo.org/index.php/anres/article/view/244324

Davini, P., Bechini, R., Cremonini, R., & Cassardo, C. (2012). Radar-based analysis of convective storms over Northwestern Italy. Atmosphere, 3(1), 33-58. https://www.mdpi.com/2073-4433/3/1/33

Güneyli, H., & Saleh Ahmed, S. M. (2023). Detecting abnormal seismic activity areas of Anatolian plate and deformation directions using Python Geospatial libraries. Heliyon, 9(3), e14394. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e14394

Hong, Y., & Gourley, J. J. (2015). Radar hydrology: Principles, models, and applications. CRC Press. https://doi.org/10.1201/b17921

Kiguchi, M., Matsumoto, J., Kanae, S., & Oki, T. (2016). Pre-monsoon rain and its relationship with monsoon onset over the Indochina peninsula. Frontiers in Earth Science, 4. https://doi.org/10.3389/feart.2016.00042

Lashkari, H., Mohammadi, Z., & Keikhosravi, G. (2017). Annual fluctuations and displacements of inter tropical convergence zone (ITCZ) within the range of Atlantic Ocean-India. Open Journal of Ecology, 7(1), 12-33. https://doi.org/10.4236/oje.2017.71002

Mahavik, N. (2017). Spatial seasonal distribution of climatological precipitation over the middle of the Indochina peninsula. Applied Environmental Research, 39(3), 63-76. https://doi.org/10.35762/AER.2017.39.3.7

Mahavik, N., & Tantanee, S. (2019). Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand. Engineering and Applied Science Research, 46(4), 318-330. https://ph01.tci-thaijo.org/index.php/easr/article/view/181046

Mahavik, N., & Tantanee, S. (2021). Seasonal characteristics of precipitating cloud properties and structures in the inland of the indochina peninsula: A legacy of 16 years of the tropical rainfall measuring mission (trmm) satellite. Geographia Technica, 16(1), 48-66. https://doi.org/10.21163/GT_2021.161.05

Matsumoto, J. (1997). Seasonal transition of summer rainy season over indochina and adjacent monsoon region. Advances in Atmospheric Sciences, 14, 231-245. https://doi.org/10.1007/s00376-997-0022-0

National Center for Atmospheric Research. (2021). NOAA’s weather and climate toolkit (Version 4.9.1) [Computer software]. https://www.ncdc.noaa.gov/wct/index.php

Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134(10), 2702-2721. https://doi.org/https://doi.org/10.1175/MWR3200.1

Takahashi, H. G., & Yasunari, T. (2006). A climatological monsoon break in rainfall over Indochina—A singularity in the seasonal March of the Asian summer monsoon. Journal of Climate, 19(8), 1545-1556. https://doi.org/https://doi.org/10.1175/JCLI3724.1

University Corporation for Atmospheric Research. (2017). Weather radar fundamentals. Retrieved February 10, 2024 from https://www.meted.ucar.edu/radar/basic_wxradar/index.htm

Wang, B., & LinHo. (2002). Rainy season of the Asian–pacific summer monsoon. Journal of Climate, 15(4), 386-398. https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2

Wang, B., Shi, W., & Miao, Z. (2015). Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space. PLOS ONE, 10(3), e0118537. https://doi.org/10.1371/journal.pone.0118537

Yuill, R. S. (1971). The standard deviational ellipse; An updated tool for spatial description. Geografiska Annaler: Series B, Human Geography, 53(1), 28-39. https://doi.org/10.2307/490885

Downloads

Published

2025-12-28

How to Cite

Sermsook, N. (2025). Spatial and Temporal Analysis of Summer Rainfall Characteristics in Upper Northeastern Thailand Using Weather Radar Data. Journal of Letters, 54(2), 1–24. retrieved from https://so03.tci-thaijo.org/index.php/jletters/article/view/281376

Issue

Section

Research Articles / Academic Articles