A Study of Tourist Behavior in Destination Selection and Distribution of Tourists Using an Agent-Based Model:
A Case Study of Chon Buri Province
Keywords:
agent-based model, destination selection, distribution of tourists, NetLogo, geographic, information systemAbstract
This research aims to investigate the selection of travel destinations by tourists using an agent-based model (ABM) as well as the distribution of tourists at destinations in Chon Buri Province. The ABM was developed using the NetLogo program and operated on a geographic information system (GIS). This study examined tourist behaviors via 3,200 agents that proportionally represent the number of excursionists in Chon Buri Province in 2019. The tourist agents were classified into 12 groups according to sex and age range, each having different levels of interest in destination types. In this study, we define six types of tourist destinations, with 59 destinations in total. The agents started their decision-making by randomly choosing a destination type, given a probability function representing the chances of each destination type being selected based on each agent group’s rank of interests. The agents only selected destinations from the type that they had chosen in a range of 50 kilometers from the agent's current location. Agents were released to the study area on an hourly basis, traveled at a constant speed of 60 km/h, and stayed at the chosen destination for two hours. The agents were allowed to choose destinations from 8:00 a.m. to 4:30 p.m. Based on 45 model simulations, the types of destinations that were most selected by tourist agents were natural (48%), followed by recreational (30%) and cultural and religious (17%). The largest number of tourists was at historical and shopping destinations, as these types of destinations are few in number in the study area. Model results correspond to the most observed tourist groups at five surveyed destinations. It was also found that tourists were not evenly distributed over the province but concentrated at Pattaya City and Saen Suk Municipality, where there are a large number of destinations of different types. Results from this study can be employed for tourism planning and development at a local and national scale.
References
ภาษาไทย
Kasin Ransikarbum & Wattana Chanthakhot กสิณ รังสิกรรพุม & วัฒนา จันทะโคตร. (2020). Baepchamlong thang computer baeptuathan samrap wikro kanwangphan opphayop chak het chukchoen ploeng mai nai koranisueksa arkan rian แบบจำลองทางคอมพิวเตอร์แบบตัวแทนสำหรับวิเคราะห์การวางแผนอพยพจากเหตุฉุกเฉินเพลิงไหม้ในกรณีศึกษาอาคารเรียน [Fire emergency evacuation study using agent-based computer programming: A case study of educational building]. Warasarn witthayasat lae technology วารสารวิทยาศาสตร์และเทคโนโลยี [Thai Science and Technology Journal], 28(10), 1871-1888.
Ministry of Tourism and Sports กระทรวงการท่องเที่ยวและกีฬา. (2020). Sathiti nakthongtiew phainai prathet pi 2562 (Jamnaek tam phumiphak lae changwat) สถิตินักท่องเที่ยวภายในประเทศปี 2562 (จำแนกตามภูมิภาคและจังหวัด) [Domestic tourism statistics Q1-Q4 2019 (Classify by region and province]. Retrieved July 8, 2022, from https://www.mots.go.th/news/category/618
Ministry of Tourism and Sports, Office of the Permanent Secretary สำนักงานปลัดกระทรวงการท่องเที่ยวและกีฬา. (2022). Phan patthana karn thongtiew haeng chat (B.E. 2564-2565) แผนพัฒนาการท่องเที่ยวแห่งชาติ (พ.ศ.2564-2565) [Thailand’s national tourism development plan (2021-2022)]. Retrieved October 10, 2022, from https://secretary.mots.go.th/strategy/more_news.php?cid=9
Taweesak Sawangmek ทวีศักดิ์ สว่างเมฆ. (2015). Botbat khong nanthanakarn karnthongtiew nai karnpatthana prathet บทบาทของนันทนาการการท่องเที่ยวในการพัฒนาประเทศ [The role of tourism recreation in country development]. Sakthong: Warasarn manutsayasat lae sangkomsat สักทอง: วารสารมนุษยศาสตร์และสังคมศาสตร์ [The Golden Teak: Humanity and Social Science Journal], 21(1), 39-54. https://so05.tci-thaijo.org/index.php/tgt/article/view/39266
ภาษาต่างประเทศ
Alvarez, E., & Brida, J. G. (2018). An agent-based model of tourism destinations choice. International Journal of Tourism Research, 21(2), 145–155. https://doi.org/10.1002/jtr.2248
Amelung, B., Student, J., Nicholls, S., Lamers, M., Baggio, R., Boavida-Portugal, I., Johnson, P., de Jong, E., Hofstede, G. J., Pons, M., Steiger, R., & Balbi, S. (2016). The value of agent-based modelling for assessing tourism–environment interactions in the anthropocene. Current Opinion in Environmental Sustainability, 23, 46–53. https://doi.org/10.1016/j.cosust.2016.11.015
Anantsuksomsri, S., & Tontisirin, N. (2013). Review article: Agent-based modeling and disaster management. Journal of Architectural/Planning Research and Studies, 10(2), 1–14. https://doi.org/10.56261/jars.v10i2.16697
Baggio, R., & Klobas, J. (2017). Quantitative methods in tourism: A handbook (2nd ed.). Channel View Publications.
Balbi, S., & Giupponi, C. (2010). Agent-based modelling of socio-ecosystems: A methodology for the analysis of adaptation to climate change. International Journal of Agent Technologies and Systems, 2(4), 17–38. https://doi.org/10.4018/jats.2010100103
Baloglu, S. (1997). The relationship between destination images and sociodemographic and trip characteristics of international travellers. Journal of Vacation Marketing, 3(3), 221–233. https://doi.org/10.1177/135676679700300304
Baloglu, S. & McCleary, K. W. (1999). A model of destination image formation. Annals of Tourism Research, 26(4), 868–897. https://doi.org/10.1016/S0160-7383(99)00030-4
Boavida-Portugal, I., Ferreira, C. C., & Rocha, J. (2017). Where to vacation? An agent-based approach to modelling tourist decision-making process. Current Issues in Tourism, 20(15), 1557–1574. https://doi.org/10.1080/13683500.2015.1041880
Božić, S., Jovanović, T., Tomić, N., & Vasiljević, D. A. (2017). An analytical scale for domestic tourism motivation and constraints at multi-attraction destinations: The case study of Serbia’s Lower and Middle Danube region. Tourism Management Perspectives, 23, 97–111. https://doi.org/10.1016/j.tmp.2017.05.002
Cannon, T. F., & Ford, J. (2002). Relationship of demographic and trip characteristics to visitor spending: An analysis of sports travel visitors across time. Tourism Economics, 8(3), 263–271. https://doi.org/10.5367/000000002101298106
Cetin, G., & Bilgihan, A. (2016). Components of cultural tourists’ experiences in destinations. Current Issues in Tourism, 19(2), 137-154. https://doi.org/10.1080/13683500.2014.994595
Chen, J. S. (1998). The tourists’ cognitive decision making model. The Tourist Review, 53(1), 4–9. https://doi.org/10.1108/eb058263
Chen, P. J., & Kerstetter, D. L. (1999). International students’ image of rural Pennsylvania as a travel destination. Journal of Travel Research, 37(3), 256–266. https://doi.org/10.1177/004728759903700307
Collins, D., & Tisdell, C. (2002). Gender and differences in travel life cycles. Journal of Travel Research, 41(2), 133–143. https://doi.org/10.1177/004728702237413
Crooks, A. (2015). Agent-based model and geographic information systems. In C. Brunsdon & A. Singleton (Eds.), Geocomputation: A practical premier (pp. 63-77). SAGE.
Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60. https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3C41::AID-CPLX9%3E3.0.CO;2-F
Faulkner, B., & Russell, R. (2001). Turbulence, chaos and complexity in tourism systems: A research direction for the new millennium. In B. Faulkner, G. Moscardo, & E. Laws (Eds.), Tourism in the twenty-first century: Reflections on experience (pp. 329–349). Continuum.
Garg, A. (2015). Travel risks vs tourist decision making: A tourist perspective. International Journal of Hospitality and Tourism Systems, 8(1), 1-9. http://dx.doi.org/10.21863/ijhts/2015.8.1.004
Hsu, T.-K., Tsai, Y.-F., & Wu, H.-H. (2009). The preference analysis for tourist choice of destination: A case study of Taiwan. Tourism Management, 30(2), 288–297. https://doi.org/10.1016/j.tourman.2008.07.011
İlhan, Ö. A., Balyalı, T. Ö., & Aktaş, S. G. (2022). Demographic change and operationalization of the landscape in tourism planning: Landscape perceptions of the Generation Z. Tourism Management Perspectives, 43, 100998. https://doi.org/10.1016/j.tmp.2022.100988
Islam, M. R. (2018). Sample size and its roles in central limit theorem (CLT). Computational and Applied Mathematics Journal, 4(1), 1-7.
Johnson, P. A., & Sieber, R. E. (2011). An agent-based approach to providing tourism planning support. Environment and Planning B: Planning and Design, 38(3), 486–504. https://doi.org/10.1068/b35148
Kim, J., Takabatake, T., Nistor, I., & Shibayama, T. (2021). A comparison between agent-based and GIS-based tsunami evacuation simulations: A case study for Tofino, BC. Canadian Journal of Civil Engineering, 49(4), 511-526. https://doi.org/10.1139/cjce-2020-0660
Lehto, X. Y., O’leary, J. T., & Lee, G. (2002). Mature international travelers. Journal of Hospitality & Leisure Marketing, 9(1-2), 53–72. https://doi.org/10.1300/J150v09n01_05
Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4(3), 151–162. https://doi.org/10.1057/jos.2010.3
McCabe, S., Li, C. & Chen, Z. (2016). Time for a radical reappraisal of tourist decision making? Toward a new conceptual model. Journal of Travel Research, 55(1), 3–15. https://doi.org/10.1177/0047287515592973
Miyasaka, T., Le, Q. B., Okuro, T., Zhao, X., & Takeuchi, K. (2017). Agent-based modeling of complex social–ecological feedback loops to assess Multi-Dimensional Trade-offs in Dryland Ecosystem Services. Landscape Ecology, 32, 707–727. https://doi.org/10.1007/s10980-017-0495-x
Nicholls, S., Amelung, B., & Student, J. (2017). Agent-based modeling: A powerful tool for tourism researchers. Journal of Travel Research, 56(1), 3-15. https://doi.org/10.1177/0047287515620490
Paül i Agustí, D. 2021. Mapping gender in tourist behaviour based on Instagram. Journal of Outdoor Recreation and Tourism, 35, 100381. https://doi.org/10.1016/j.jort.2021.100381
Pearce, D. G. (2014). Toward an integrative conceptual framework of destinations. Journal of Travel Research, 53(2), 141–153. https://doi.org/10.1177/0047287513491334
Pons, M., Johnson, P. A., Rosas, M., & Jover, E. (2014). A georeferenced agent-based model to analyze the climate change impacts on ski tourism at a regional scale. International Journal of Geographical Information Science, 28(12), 2474–2494. https://doi.org/10.1080/13658816.2014.933481
Rebollo, H. P. M. (2018). A structural model of millennial tourist behavior towards tourism in Davao region. Journal of Advances in Humanities and Social Sciences, 4(1), 26-36. https://doi.org/10.20474/jahss-4.1.3
Ruiz Palacios, M. A., Pereira Texeira de Oliveira, C., Serrano González, J., & Saénz Flores, S. (2021). Analysis of tourist systems predictive models applied to growing sun and beach tourist destination. Sustainability, 13(2), 785. https://doi.org/10.3390/su13020785
Schramm, M. E., Trainor, K. J., Shanker, M., & Hu, M. Y. (2010). An agent-based diffusion model with consumer and brand agents. Decision Support Systems, 50(1), 234–242. https://doi.org/10.1016/j.dss.2010.08.004
Seddighi, H. R., & Theocharous, A. L. (2002). A model of tourism destination choice: A theoretical and empirical analysis. Tourism Management, 23(5), 475–487. https://doi.org/10.1016/S0261-5177(02)00012-2
Seyidov, J., & Adomaitiene, R. (2017). Factors influencing local tourists’ decision-making on choosing a destination: A case of Azerbaijan. Ekonomika, 95(3), 112–127. https://doi.org/10.15388/Ekon.2016.3.10332
Silva, H. E., & Henriques, F. M. A. (2021). The impact of tourism on the conservation and IAQ of cultural heritage: The case of the monastery of Jerónimos (Portugal). Building and Environment, 190, 107536. https://doi.org/10.1016/j.buildenv.2020.107536
Sirakaya, E., & Woodside, A. G. (2005). Building and testing theories of decision making by travellers. Tourism Management, 26(6), 815–832. https://doi.org/10.1016/j.tourman.2004.05.004
Struthers, E. (2021). An introduction to agent-based modelling. 4CDA. Retrieved October 2, 2022, from https://4cda.com/an-introduction-to-agent-based-modelling/
Student, J., Kramer, M. R., & Steinmann, P. (2020). Simulating emerging coastal tourism vulnerabilities: An agent-based modelling approach. Annals of Tourism Research, 85, 103034. https://doi.org/10.1016/j.annals.2020.103034
Vujičić, M. D., Kennell, J., Morrison, A., Filimonau, V., Štajner Papuga, I., Stankov, U. & Vasiljević, D. A. (2020). Fuzzy modelling of tourist motivation: An age-related model for sustainable, multi-attraction, urban destinations. Sustainability, 12(20), 8698. https://doi.org/10.3390/su12208698
Wen, L., Liu, C., & Song, H. (2019). Forecasting tourism demand using search query data: A hybrid modelling approach. Tourism Economics, 25(3), 309–329. https://doi.org/10.1177/1354816618768317
Wilensky, U. (1999). Netlogo (Version 6.3) [Computer software]. Center for Connected Learning and Computer-Based Modeling, Northwestern University. http://ccl.northwestern.edu/netlogo/
Wu, J., Wang, X., & Pan, B. (2019). Agent-based simulations of China inbound tourism network. Scientific Reports, 9, Article 12325. https://doi.org/10.1038/s41598-019-48668-2
Yu, Y., Wang, Y., Gao, S., & Tang, Z. (2017). Statistical modeling and prediction for tourism economy using dendritic neural network. Computational Intelligence and Neuroscience, 2017, Article 7436948. https://doi.org/10.1155/2017/7436948
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and plagiarism
Authors are responsible for obtaining permission to use copyrighted materials from copyright owners. Authors are responsible for observing requisite copyright law when quoting or reproducing copyrighted materials. Quotations and reproductions of content from other published sources must be accompanied by a reference and all sources should be clearly listed in the references section. Quotations and reproductions of content from external sources without due attribution could be considered a severe infringement of academic conduct and may constitute a legal offence under the Copyright Act of B.E. 2537. Any legal ramifications arising from the infringement of copyright regulations would be the sole responsibility of the author(s).