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Abstract

This research aimed to compare the efficiency of the 4 forms of GIRM; Form 1 Original GIRM
developed by Brigg and Wilson (2007), Form 2 AGIRM A, Form 3 AGIRM B, and Form 4 Numerical Bayesian
GIRM developed by the researcher. The research also investigated the impact of the sample size, the test length,
and the sensitivity of each form toward the prior distribution setting of parameter of the items and the examin-
ers which affected the efficiency of the estimation which could be measured by 3 types of indicators; Biased
estimator calculated from Mean Average Deviation (MAD), Uncertainty estimator calculated from Standard
Deviation (S.D.), and efficiency of constituent variance estimation calculated from Euclidean Distance (EUC).
The data was simulation data generated using program R and was assessed with program WinBUGS with
Package R2 WinBUGS. The results of research were as follows : 1.From the comparison of GIRM, it was found
that when Bias estimated from MAD was considered, Form 1 Original GIRM and Form 4 Numerical Bayesian
GIRM had the best efficiency. Form 4 could estimate normal prior distribution of the items and the examiners.
For Uncertainty, it was found that Form 4 is the most efficiency for normal prior distribution. For the prior
distribution of one parameter without normal prior distribution, Form 1 Original GIRM had the best efficiency.
And when the efficiency of constituent variance estimation calculated from EUC was considered, it was found

that Form 2 AGIRM A had the most efficiency. 2. From the study of the influence of the sample size and the test
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length, it was found that the sample size affected the measure of bias efficiency in Form 1, Form 2, and
Form 3. For the uncertainty in the estimation, it was found that the sample size affected all forms of efficiency
estimation. And when the efficiency of constituent variance EUC was considered, it was found that the sample
size did not affect efficiency estimation. The test length affected the bias efficiency and efficiency of constituent
variance EUC in Form 1, Form 2, and Form 3. For uncertainty of estimation, it was found that the sample size
affected all forms of efficiency estimation. 3. According to the sensitivity of the test analysis, it was found that
the prior distribution of the examiners did not affect the measure of bias efficiency. For the uncertainty of esti-
mation and analysis of constituent variance EUC, it was found that the prior distribution of the items affected
the measure of bias efficiency. It was found that the prior distribution affected the measure of Bias estimator
and all forms of uncertainty estimator. It also affected the efficiency of constituent variance EUC only when the

prior distribution of the examiners was gamma.
Keywords : Item Analysis, Parameter Estimation, Generalization in Item Response Modeling
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QLI
! TUsunsu GENOVA (GENeralized Analysis of Variance System) \Julusunsudmsunisiiasiest
mmiaummaqmngﬂﬂiﬁ@ﬂé’waﬁaﬂawuﬁﬂL%aﬁamaqmamsi’m (Generalizability Theory; GT) (Crick &
Brennan, 1983)
23 Tusunsy Win BUGS 1Julusunsudmsuuszanaainisniinesaiedsn1is MCMC (Markov
Chain Monte Carlo) Tun1sUszanaumnsiinesvesisns asusisdsanniideiiovestunansneuaues
foaou MIUsunsy WinBUGS lunisuszanalaenis@oumddlulusunsy R Inelidasziluldsunsy

WinBUGS Waznduns1eaunalulusunsy R 728 Package R2ZWinBUGS (Sturtz, Ligges, & Gelman, 205)
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