

The attitudes of teachers of rural areas towards the state of learning materials, school curriculum, simulation software, and argument-based inquiry activity to enhance middle school students' scientific reasoning ability

Research article

ทัศนคติของครูในเขตชนบทที่มีต่อสภาพของสื่อการเรียนรู้ หลักสูตรสถานศึกษา ซอฟต์แวร์สถานการณ์จำลอง และกิจกรรมการสืบสອบที่ใช้การโต้แย้งเป็นฐาน ที่ส่งเสริมความสามารถในการให้เหตุผลเชิงวิทยาศาสตร์ของนักเรียนระดับชั้นมัธยมศึกษาตอนต้น

Jettnipith Thantong^{1*} Jaitip Na-Songkhla² Pornsook Tantrarungroj³
เจตนิพิฐ์ แท่นทอง^{1*} ใจทิพย์ ณ สงขลา² พรสุข ตันตรารุ่งโรจน์³

*^{1,2,3} Department of Educational Technology and Communications, Faculty of Education, Chulalongkorn University.

254 Phayathai Rd. Wangmai Patumwan Bangkok 10330 Thailand

*^{1,2,3} ภาควิชาเทคโนโลยีและสื่อสารการศึกษา คณะครุศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

254 ถนนพญาไท แขวง วังใหม่ เขตปทุมวัน กรุงเทพมหานคร 10330

*Corresponding author. Email: jett.bioteacher@gmail.com

Received: April 16, 2020

Revised: June 15 2020

Accepted: June 22, 2020

Abstract

This study aimed to investigate the attitude of rural teachers towards the problem in the current state of learning materials, school curriculum, simulation software, and argument-based inquiry activity for enhancing middle school's scientific reasoning ability. The survey research method was used in this study, and data were collected from 42 small, medium, large, and extra-large schools in Sisaket province (northeastern of Thailand) using 105 questionnaires. The research findings reveal that the analysis of descriptive statistics and PNI_{mod} showed that the essential features of simulation, which could be improved, were displaying a relationship between multivariable, feedback, and result. Likewise, the argument-based inquiry could be empowered with an emphasis on evidence or question-based evidence, presentation of evidence supporting the claim, presentation of a counter-argument, a stipulation of a conflict of arguments, and use of mathematics, information, information technologies, or computational thinking.

Keywords: scientific reasoning; simulation software; argument-based inquiry; rural teachers

บทคัดย่อ

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อศึกษาทัศนะของครูในโรงเรียนเขตชนบทที่มีต่อสภาพปัจจุบันของสื่อการเรียนรู้ หลักสูตรสถานศึกษา ซอฟต์แวร์สถานการณ์จำลอง และกิจกรรมการสืบสอดที่ใช้การโต้แย้งเป็นฐาน ที่ส่งเสริมความสามารถในการให้เหตุผลเชิงวิทยาศาสตร์ของนักเรียน การวิจัยเชิงสำรวจถูกนำมาใช้ใน การดำเนินการศึกษาและเก็บรวบรวมข้อมูลจาก 42 โรงเรียน ทั้งโรงเรียนขนาดเล็ก ขนาดกลาง ขนาดใหญ่ และขนาดใหญ่พิเศษ ในจังหวัดศรีสะเกษ (ภาคตะวันออกเฉียงเหนือของประเทศไทย) โดยใช้แบบสอบถาม จำนวน 105 ฉบับ ผลการวิจัยพบว่าจากการวิเคราะห์สถิติเชิงพรรณนา และตัวนีจัดเรียงลำดับความสำคัญของ ความต้องการจำเป็น แสดงให้เห็นว่าลักษณะของสถานการณ์จำลองที่ต้องถูกพัฒนาให้ดียิ่งขึ้น คือ การแสดง ความสัมพันธ์ระหว่างตัวแปรเชิงพหุ การให้ข้อมูลย้อนกลับ และผลลัพธ์ นอกจากนี้ลักษณะของการสืบสอดที่ ใช้การโต้แย้งเป็นฐานที่ต้องถูกพัฒนาให้ดียิ่งขึ้น ได้แก่ การให้ผู้เรียนเน้นประจำษพยาน หรือประจำษพยาน ของคำตาม การนำเสนอประจำษพยานเพื่อสนับสนุนข้อกล่าวอ้าง การนำเสนอข้อโต้แย้งของข้อกล่าวอ้าง การกำหนดเงื่อนไขของข้อขัดแย้งในการโต้แย้ง และการใช้คณิตศาสตร์ สารสนเทศ เทคโนโลยีสารสนเทศ หรือ การใช้การคิดเชิงคำนวณให้มากขึ้นในกิจกรรมสืบสอด

คำสำคัญ: การให้เหตุผลเชิงวิทยาศาสตร์ ซอฟต์แวร์สถานการณ์จำลอง การสืบสอดโดยใช้การโต้แย้งเป็นฐาน ครูในชนบท

Introduction

Scientific reasoning was defined as “the reasoning and problem-solving skills involved in generating, testing and revising hypotheses or theories” (Köksal-Tuncer & Sodian, 2018). Scientific reasoning involves the thinking that leads to proof and judges with an emerging scientific reason. Scientific reasoning can be the thinking tools for specific explanations and considerations about an evidence-based intervention influential to a situation via systematic hypothesizing and testing (Bolduc, 2014; Dennis, Dorsey, & Gitlow, 2015; Mayer, Sodian, Koerber, & Schwippert, 2014). It is personal thinking to link a cause and result by using emerging evidence from investigation or experimentation leading towards assumption. Scientific reasoning consists of hypothesizing, controlling, and designing experiments (Mayer et al., 2014) . Scientific reasoning is needed, not only with scientists, but in other occupations, i.e. physiologist, engineer, architecture, urban planner, or occupational therapist (Thuneberg, Hautamäki, & Hotulainen, 2014). Moreover, it has a relationship with learner's intelligence, reading comprehension, spatial ability, and problem-solving skill (Mayer et al., 2014). Furthermore, it has been used to measure scientific literacy in PISA assessment (Thuneberg et al., 2014).

The report of the PISA 2015 assessment result of scientific literacy shows that the OECD average is 493 points among 57 participated countries. Thailand's average is 421 points. Thailand ranks 41st amongst the countries (OECD, 2016). Based on the PISA report in Thailand, the main issue is that a student is not performing well on a scientific literacy test. Therefore, we can suppose that scientific reasoning score in Thailand is below international levels among participating countries.

Though, recent studies have shown instructional approaches that can advocate student's scientific reasoning. For example, inquiry-based learning (Gillies, Nichols, Burgh, & Haynes, 2014), theory-based learning (Hoban & Nielsen, 2014), and argumentation-based guided inquiry course (Acar, 2014a, 2014b). Whilst It is challenging to implement a seminar that can educate and convince teachers across the country to change their conventional teaching methods. Therefore, to consider modern technologies as an alternative teaching method, which has similar efficiency to the excellent teaching method, the economic cost is considered to be lower than the conventional teaching method.

The last decade, studies reveal emerging technologies that can promote learner's scientific reasoning. The Simulation software (Zhu, Liu, & Lee, 2020) and simulation video (Kant, Scheiter, & Oschatz, 2017; Lazonder, Hagemans, & Jong, 2010; Psycharis, 2013; Zhu et al., 2020) are effective technologies for improving students' scientific reasoning. Because the simulation is a technology that students can send input and receive instant feedback (Zhu et al., 2020); therefore, scientific phenomena will be investigated in real-time.

Although many research studies show the effectiveness of simulation and argument-based inquiry, few studies describe how a Thai teacher thought about the limitation of these implementation with the learning materials and school curriculum activities.

The objectives

This study aimed to investigate teachers' attitudes towards the problem in the current state of learning materials, school curriculum, simulation program, and argument-based inquiry activity for enhancing middle school's scientific reasoning ability in rural schools located in Sisaket province (northeastern of Thailand).

Related Works

1. Scientific Reasoning

A person who has scientific reasoning could generate a hypothesis, test hypothesis systematically through experimentation, test the hypothesis's feasibility, and generate a new

hypothesis when the previous hypothesis was rejected (Mayer et al., 2014). Scientific reasoning comprises of content free reasoning ability. However, it depends on student development. Reasoning skill is part of scientific reasoning (Acar, 2014 b). Interestingly, the previous study showed that presenting video modeling examples in a simulation-based inquiry learning environment can enhance a student's scientific reasoning (Kant et al., 2017). It is crucial evidence that real world experiments are unnecessary for enhancing scientific reasoning.

2. Simulation as Learning Materials

Simulation is the dynamic nature of the system process and the obvious mathematical structure computationally driven (Vallverdú, 2014). The objective of each scientific computer simulation is the same: to predict some behavior of the physical universe accurately (Kaizer, Heller, & Oberkampf, 2015). The prior study revealed that simulation in chemistry has equal learning benefits to real experiments (Zendler & Greiner, 2020). Moreover, it also enhances learner's cognitive processes and inquiry skills (Efstathiou et al., 2018). It is quite apparent that simulation is a reasonable learning material for enhancing a student's scientific reasoning. However, it is difficult to claim that all of the simulation software available will have sufficient benefits for students' learning, especially scientific reasoning. This study will reveal the deficient features of simulation from a rural teacher's aspect.

3. Scientific Argumentation

Scientific argumentation involves two parts. The first part is to create an evidence-based claim about a scientific question by adhering to the scientific knowledge and scientific processes. The second part is to join the boundaries of the claim's application by inspecting the limitations of investigations, where evidence is obtained (Zhu et al., 2020). As inspired by Psycharis (2013) argument framework can be divided into five levels as follows.

Level 1: Argumentation was comprised of conflict between simple argument and counter-argument.

Level 2: Argumentation was comprised of conflict between argument and evidence supported argument. But it has no demur.

Level 3: Argumentation was comprised of a set of arguments and data-rich counter-argument, reasonable explanation, or appropriate evidence. But it has insufficient firmness.

Level 4: Argumentation was comprised of an argument with a clear conflict declaration. Moreover, it has many arguments and counter-argument.

Level 5: Argumentation that shows greater than one counter-argument and leads to the next argumentation.

4. Scientific Inquiry

Scientific inquiry is seen as central to science education as an entirety (Hsu, Chiu, Lin, & Wang, 2015). According to Weber et al. (2013), Scientific inquiry comprises of 8 features as follows.

1. Asking questions, defining the problem.
2. Developing, using Models.
3. Planning, doing investigations.
4. Analyzing, interpreting data.
5. Using math, information/computer technology, computational thinking.
6. Constructing explanation, designing solutions.
7. Arguing from evidence.
8. Obtaining, evaluating, communicating information.

Previous research indicates that argument-based inquiry as a learning environment can enhance scientific reasoning (Acar, 2014b). Therefore, scientific inquiry should be collected to strengthen scientific reasoning.

5. Argument-Based Inquiry

In this study, the argument-based inquiry was combined from argument strategy and scientific inquiry. Firstly, argumentation is a model of reasoning based on creating and comparing the arguments (source). Argumentation is the cooperation of evidence and theory that support or argue the inference, model, or prediction (De La Paz, Ferretti, Wissinger, Yee, & MacArthur, 2012). It is a formulation of complex inference unable to be generated from definition or description (source). The argument strategy includes learners 1) able to link propositions with “but” as a way to show disagreement, 2) to define the strengths of those arguments, 3) to claim and give reason (premise) supporting claim, 4) to determine the different conflicts between the arguments, 5) to evaluate the acceptability of the different arguments, and to conclude or define the justified conclusions (Abi-El-Mona & Abd-El-Khalick, 2011; Amgoud & Kaci, 2007; O'Hallaron, 2014; Voss & Means, 1991; Zhang et al., 2015). Secondly, scientific inquiry covers learner's engagement with a scientific

question, concentration in shreds of evidence or evidence that relate to the question, ability to build the explanation from data and gathered pieces of evidence, use of mathematics, ICT or computer technology and computational thinking, learner connect acquired knowledge to scientific knowledge, and learner's communication and evaluation of reasonable knowledge (Grigg, Kelly, Gamoran, & Borman, 2013; Hodson, 2014; Weber et al., 2013). So, argument-based inquiry is a learning activity that gives an opportunity to learners to use various inquiring methods like a scientist. There is a cycle of the process from asking a scientific question, investigation and evaluation of the evidences or answer of the question. Learners use acceptable methods that can be accepted by scientist community, including realizable knowledge from the scientific report, confirmation of scientific arguments, and awareness of the complicated relationship between science, technology, social and environment. Via activities, the learner has to apply the argument strategy and active self-regulation to investigate knowledge by themselves.

According to literature, the argument-based inquiry seems to be an optimal learning activity for empowering student's scientific reasoning. However, few studies show the current state of teacher practice and the expected state of argument-based inquiry. In this study, we will reveal the gap between the current and expected state.

6. Promoting Scientific Reasoning in School Curriculum

Although the studies about the effect of school curriculum on student's scientific reasoning are very limited, in the case of Thailand, the school curriculum will provide a framework and direction for the procurement of education to succeed in the core curriculum (Seehamat, Sarnrattana, Tungkasamit, & Srisawasdi, 2014). The school curriculum should cater to an opportunity for students to express scientific reasoning skills. Thus, the understanding of the current state and obstacles for practical implementation is needed.

Materials and Methods

This is a descriptive quantitative study with a survey method using questionnaires as the instrument to measure the teacher's viewpoint. The research population was 126 general science teachers who are teaching in secondary education (educational service area 28, Sisaket province). The sample size was defined from the table determining sample size from a given population (Krejcie & Morgan, 1970). The research 105 samples were randomly collected by simple random sampling. Consequently, modified priority need index

(Phanchalaem, Sujiva & Tangdhanakanond, 2016) and descriptive statistics were used for data analysis.

The systematic approach (Yavuz, Parzych, & Generali, 2017) was used to conduct this study. The 4-part questionnaire is shown in Table 1, which was developed by researchers to reflect the differences between the current state of simulation and argument-based inquiring activity, enhancing students' scientific reasoning and the state of expectation. The first section of the survey leads participants to complete background and demographic information such as gender, teaching experience, teaching level, school type, school size, educational background, and teaching subject. Part 2 – 4, each item is closed-end question, with Likert's 5 rating scales (very poor = 1, poor = 2, fair = 3, good = 4, excellent = 5). The participants were asked to check how much they agree with the statement concerning topics shown in Table 1.

Table 1 The key questions of the needs associated with each part.

Part	Items
Basic information of the informant.	7
The state between current and expected learning materials and school curriculum for enhancing student's scientific reasoning.	13
The state between current and expected simulation for enhancing student's scientific reasoning.	5
The state between current and expected argument-based inquiring activity for enhancing scientific reasoning.	16

The questionnaire consists of 4 parts as followings:

Part 1: Basic information of the informant

In this part, informants were asked about the necessary information to describe the sample's demographic.

Part 2: The state between current and expected learning materials and school curriculum for enhancing student's scientific reasoning

In this part, informants will express the different states between existing learning materials and school curriculum for enhancing student's scientific reasoning and expected state should be.

Part 3: The state between current and expected simulation for enhancing student's scientific reasoning

In this part, informants will express the different features between existing simulations for enhancing students' scientific reasoning that teachers have used and expected features should be.

Part 4: The state between current and expected argument-based inquiring activity for enhancing scientific reasoning

In this part, informants will express the different features between existing argument-based inquiring activity for enhancing students' scientific reasoning that teachers have used and expected features should be.

To validate the assertion of 41 items, researchers asked the opinions of five experts (three educational technologists and two science educators) to validate the question's objectives. The Lawshe's content validity ratio (Lawshe, 1975, as cited in Gilbert and Prion, 2016) was used for analyzing the question's validity. The result of the analysis of CVR found that all of the questions could be considered good question because of CVR more than 0.78 (Polit, Beck, & Owen, 2007). Then the questionnaires were distributed to 12 science teachers in Ubon Ratchathani province to evaluate the objectivity. The teachers were asked to share their experiences regarding the length of the survey. Pilot respondents indicated that they were satisfied with quality of the questions (Seechaliao, 2010). Finally, questionnaires were sent to 36 science teachers in educational service area 29, Ubon Ratchathani province, to assess internal consistency. Cronbach's alpha coefficient assessed internal consistency, and the instrument was found to be highly reliable (49 items; $\alpha = 0.917$). Following the pilot study and validation of the instrument, 105 participants (science teachers in educational service area 28) completed the revised version.

In an analysis of the survey, this study has followed Phanchalaem et al. (2016). The modified priority need index (PNI_{mod}) was used for the analysis of collected data as an intervalist's viewpoint (Harpe, 2015). The priority needs index is presented as a mean point and PNI_{mod} value because PNI could be used for calculation from importance and degree of success (Lane, Crofton, & Hall, 1983, as cited in Wongwanich, Sakolrak, & Piromsombat, 2014).

Results

The questionnaires out of 126, 105 (83%) were responded by 35 (33%) male and 70 (67%) female teachers. Among these, 27 (26%) had less than 5 years of teaching experience,

26 (25%) teachers with 10 – 15 years of teaching experience, 15 - 20 years of teaching experience, and 20 (19%) with more than 20 years of teaching experience. Twenty-five teachers (24%) taught at Mathayomsuksa 1 (level 7), 32 (30%) at Mathayomsuksa 2 (level 8), and 48 (46%) at Mathayomsuksa 3 (level 9). With the number of 27 (26%), employed at Opportunity extension school, and 78 (74%) at secondary school. There were 27 teachers (26%) from small schools, 34 (32%) from middle schools, 19 (18%) from large schools, and 25 (24%) from extra-large schools. These teachers held a bachelor's degree, 48 (46%), 55 (52%) with master's degree, and 2 (2%) doctorates. Among these respondents, 63 (60%) only taught general science and 42 (40%) general science and other subjects (Table 2).

Table 2 Demographic Characteristic of Teachers. (N = 105)

Demographic Data		Frequency	Percentage
Gender	Male	35	33
	Female	70	67
Teaching Experience	<5 years	27	26
	5-10 years	26	25
	10-15 years	16	15
	15-20 years	16	15
	>20 years	20	19
Teaching Level	Mathayomsuksa 1 (level 7)	25	24
	Mathayomsuksa 2 (level 8)	32	30
	Mathayomsuksa 3 (level 9)	48	46
School type	Opportunity extension school	27	26
	Secondary school	78	74
School size	Small	27	26
	Middle	34	32
	Large	19	18
	Extra Large	25	24
Educational background	Bachelor	48	46
	Master	55	52
	Doctor	2	2
Teaching Subject	Only general science	63	60
	General science and Others	42	40

Overall of the attitude of teachers towards the problems, the feature (Student makes an understanding of the relationship between multiple variables) is the most expected ($PNI_{mod} = 0.23$), followed by the allocation of result and feedback ($PNI_{mod} = 0.22$),

the accentuation of evidence or question-based evidence in learning activities ($PNI_{mod} = 0.22$), the student's presentation of evidence supporting the claim ($PNI_{mod} = 0.22$), the student's presentation of a count-argument ($PNI_{mod} = 0.21$), the investigation of model's behavior in scientific phenomena ($PNI_{mod} = 0.20$), the defining of conflict argument ($PNI_{mod} = 0.20$), and the use of mathematics, information, information technologies, or computational thinking ($PNI_{mod} = 0.19$), respectively. Besides, the researcher found the limitation of learning materials and the school curriculum. The existing learning materials ($PNI_{mod} = 0.22$) and school curriculum ($PNI_{mod} = 0.21$) could enhance student's scientific reasoning sufficiently, as shown in Table 3.

Table 3 The priority needs index of the problem in the current state of learning materials, school curriculum, simulations software, and argument-based inquiry activity for enhancing middle school's scientific reasoning ability ($N = 105$)

Features of simulation and argument-based inquiry	I*	D**	PNI***	Rank
The simulation could lead the student to make an understanding of the relationship between multiple variables of scientific phenomena.	4.07	3.30	0.23	1
The simulation could allocate features of results and feedback. For instance, the user interface could show a data table or graph of the experiment result.	4.01	3.29	0.22	2
The existing learning materials could enhance a student's scientific reasoning.	4.13	3.38	0.22	2
The argument-based inquiry could have more emphasis on evidence or question-based evidence.	4.03	3.30	0.22	2
The argument-based inquiry could lead the student to present evidence supporting the claim.	4.13	3.40	0.22	2
The argument-based inquiry could lead the student to present a counter-argument.	4.13	3.41	0.21	3
The current school curriculum could enhance a student's scientific reasoning.	4.03	3.34	0.21	3
The simulation could allocate features of defining of model's behavior in scientific phenomena.	3.98	3.32	0.20	4
The argument-based inquiry could lead the student to define conflict of arguments.	4.11	3.42	0.20	4
The argument-based inquiry could promote the student to use mathematics, information, information technologies, or computational thinking.	4.02	3.37	0.19	5

* I = The Average score of expected state.

** D = The Average score of current state.

*** PNI = I-D/D

Conclusion and Discussions

In conclusion, this study revealed that northeastern Thailand teacher's aspect rated the deficiency of learning materials and school curriculum for scientific reasoning. Likewise, simulation's features, which could be improved, are displaying a relationship between multivariable, feedback, and result. Similarly, argument-based inquiry features, which could be added to learning activities for scientific reasoning are an emphasis on evidence or question-based evidence, presentation of evidence supporting the claim, presentation of a counter-argument, stipulation of a conflict of arguments, and using of mathematics, information, information technologies, or computational thinking. Therefore, OBEC (the office of basic education commission) should provide a novel instructional simulation, which includes enhanced features, and distribution to distant schools. These insights should be used to inform simulation developers to understand the needs of users better.

Based on the results, this study investigated overall expected views of learning materials, school curriculum, simulation, and argument-based inquiry activity for enhancing middle school's scientific reasoning ability of science teachers in Sisaket province (northeastern Thailand) and explored associated factors. The results reveal the insufficiency competency of existing learning materials and school curriculum that encourages student's scientific reasoning. The results of this study is in line with previous studies that scientific reasoning is a core topic in science education in schools. While a variety of interventions are developed and implemented to deal with the problem, but there are a few learning materials and curriculum that were used for the fostering (Engelmann, Neuhaus, & Fischer, 2016). This is indicative of the demand for novel learning materials and curriculum. Besides, when ranking PNI was pronounced for the needs on more useful features of simulation, e.g., understanding of the relationship between multiple variables of scientific phenomena, results and feedback, and defining of model's behavior in scientific phenomena. This result related to findings of previous studies (Aldrich, 2009; Liu, Kinshuk, Lin, & Wang, 2012) that DLMR (dynamic linked multiple representations) as a result and feedback, such as graph and diagram. They are the efficient tools for learning with courseware. Likewise, the investigation of the model's behavior in the system is the core feature of simulation for learning (Landriscina, 2013).

More importantly, the result of this study shows the deficient positive impact of current argument-based inquiry for scientific reasoning, e.g., emphasis on evidence or question-based evidence, presentation of evidence supporting the claim, presentation of a counter-argument, stipulation of a conflict of arguments, and using of mathematics, information, information technologies, or computational thinking. This result conformed to prior studies (Grigg et al., 2013;

Weber et al., 2013) that scientific inquiry with constructing explanations from evidence is a potent activity for student's learning in scientific topics. Similarly, these results tally with antecedent studies (Abi-El-Mona & Abd-El-Khalick, 2011; Amgoud & Kaci, 2007; O'Hallaron, 2014; Voss & Means, 1991; Zhang et al., 2015) that presentation of reason supporting claim, introducing a counter-argument, and determining of the different conflict between arguments is the crucial process in argumentation.

Suggestions

This study was associated with limitations. The sample size was small, and the data were obtained from a single setting. Other studies should study with larger sample sizes and in different regions. Mixed methods are a better method to conduct future studies.

Acknowledgement

Financial support from National Research Council of Thailand is greatly appreciated.

References

Abi-El-Mona, I., & Abd-El-Khalick, F. (2011). Perceptions of the Nature and 'Goodness' of Argument among College Students, Science Teachers, and Scientists. *International Journal of Science Education*, 33(4), 573-605. DOI: 10.1080/09500691003677889

Acar, Ö. (2014a). Scientific reasoning, conceptual knowledge, & achievement differences between prospective science teachers having a consistent misconception and those having a scientific conception in an argumentation-based guided inquiry course. *Learning and Individual Differences*, 30, 148-154. DOI: 10.1016/j.lindif.2013.12.002

Acar, Ö. (2014b). Scientific reasoning, conceptual knowledge, & achievement differences between prospective science teachers having a consistent misconception and those having a scientific conception in an argumentation-based guided inquiry course. *Learning and Individual Differences*, 30, 148-154. DOI: 10.1016/j.lindif.2013.12.002

aldrich, c. (2009). *learning online with games, simulations, and virtual worlds: Strategies for online instruction*. Wiley.

Amgoud, L., & Kaci, S. (2007). An argumentation framework for merging conflicting knowledge bases. *International Journal of Approximate Reasoning*, 45(2), 321-340. DOI: 10.1016/j.ijar.2006.06.014

Bolduc, J.-S. (2014). Narrow and broad styles of scientific reasoning: A reply to O. Bueno. *Studies in History and Philosophy of Science Part A*, 47(0), 104-110. DOI: 10.1016/j.shpsa.2014.03.007

De La Paz, S., Ferretti, R., Wissinger, D., Yee, L., & MacArthur, C. (2012). Adolescents' Disciplinary use of evidence, argumentative strategies, and organizational structure in writing about historical controversies. *Written Communication*, 29(4), 412-454. DOI: 10.1177/0741088312461591

Dennis, C. W., Dorsey, J. A., & Gitlow, L. (2015). A call for sustainable practice in occupational therapy: Un appel à la pratique durable en ergothérapie. *Canadian Journal of Occupational Therapy*. DOI: 10.1177/0008417414566925

Efstathiou, C., Hovardas, T., Xenofontos, N. A., Zacharia, Z. C., deJong, T., Anjewierden, A., & van Riesen, S. A. N. (2018). Providing guidance in virtual lab experimentation: The case of an experiment design tool. *Educational Technology Research and Development*, 66(3), 767-791. DOI: 10.1007/s11423-018-9576-z

Engelmann, K., Neuhaus, B. J., & Fischer, F. (2016). Fostering scientific reasoning in education meta-analytic evidence from intervention studies. *Educational Research and Evaluation*, 22(5-6), 333-349. DOI: 10.1080/13803611.2016.1240089

Gilbert, G. E., & Prion, S. (2016). Making sense of methods and measurement: Lawshe's Content Validity Index. *Clinical Simulation in Nursing*, 12(12), 530-531. DOI: 10.1016/j.ecns.2016.08.002

Gillies, R. M., Nichols, K., Burgh, G., & Haynes, M. (2014). Primary students' scientific reasoning and discourse during cooperative inquiry-based science activities. *International Journal of Educational Research*, 63(0), 127-140. DOI: 10.1016/j.ijer.2013.01.001

Grigg, J., Kelly, K. A., Gamoran, A., & Borman, G. D. (2013). Effects of two scientific inquiry professional development interventions on teaching practice. *Educational Evaluation and Policy Analysis*, 35(1), 38-56. DOI: 10.3102/0162373712461851

Harpe, S. E. (2015). How to analyze Likert and other rating scale data. *Currents in Pharmacy Teaching and Learning*, 7(6), 836-850. DOI: 10.1016/j.cptl.2015.08.001

Hoban, G., & Nielsen, W. (2014). Creating a narrated stop-motion animation to explain science: The affordances of "Slowmation" for generating discussion. *Teaching and Teacher Education*, 42(0), 68-78. DOI: 10.1016/j.tate.2014.04.007

Hodson, D. (2014). Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods. *International Journal of Science Education*, 36(15), 2534-2553. DOI: 10.1080/09500693.2014.899722

Hsu, C.-C., Chiu, C.-H., Lin, C.-H., & Wang, T.-I. (2015). Enhancing skill in constructing scientific explanations using a structured argumentation scaffold in scientific inquiry. *Computers & Education*, 91, 46-59. DOI: 10.1016/j.compedu.2015.09.009

Kaizer, J. S., Heller, A. K., & Oberkampf, W. L. (2015). Scientific computer simulation review. *Reliability Engineering & System Safety*, 138, 210-218. DOI: 10.1016/j.ress.2015.01.020

Kant, J. M., Scheiter, K., & Oschatz, K. (2017). How to sequence video modeling examples and inquiry tasks to foster scientific reasoning. *Learning and Instruction*, 52, 46-58. DOI: 10.1016/j.learninstruc.2017.04.005

Köksal-Tuncer, Ö., & Sodian, B. (2018). The development of scientific reasoning: Hypothesis testing and argumentation from evidence in young children. *Cognitive Development*, 48, 135-145. DOI: 10.1016/j.cogdev.2018.06.011

Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. *Educational and Psychological Measurement*, 30(3), 607-610. DOI: 10.1177/001316447003000308

Landriscina, F. (2013). *Simulation and Learning: A Model-Centered Approach*: Springer New York.

Lazonder, A. W., Hagemans, M. G., & Jong, T. d. (2010). Offering and discovering domain information in simulation-based inquiry learning. *Learning and Instruction*, 20, 511-520.

Liu, T.-C., Kinshuk, Lin, Y.-C., & Wang, S.-C. (2012). Can verbalisers learn as well as visualisers in simulation-based CAL with predominantly visual representations? Preliminary evidence from a pilot study. *British Journal of Educational Technology*, 43(6), 965-980. DOI: 10.1111/j.1467-8535.2011.01262.x

Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. *Learning and Instruction*, 29(0), 43-55. DOI: 10.1016/j.learninstruc.2013.07.005

O'Hallaron, C. L. (2014). Supporting Fifth-Grade ELLs' argumentative writing development. *Written Communication*, 31(3), 304-331. DOI: 10.1177/0741088314536524

OECD. (2016). *PISA 2015 Results: Excellence and equity in education science performance among 15-year-olds* [eBook]. DOI: 10.1787/9789264266490-6-en

Phanchalaem, K., Sujiva, S., & Tangdhanakanond, K. (2016). The state of teachers' educational data use in Thailand. *Procedia - Social and Behavioral Sciences*, 217, 638-642. DOI: 10.1016/j.sbspro.2016.02.084

Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. *Research in Nursing & Health*, 30(4), 459-467. DOI: 10.1002/nur.20199

Psycharis, S. (2013). Examining the effect of the computational models on learning performance, scientific reasoning, epistemic beliefs and argumentation: An implication for the STEM agenda. *Computers & Education*, 68, 253-265. DOI: 10.1016/j.compedu.2013.05.015

Seechaliao, T. (2010). *A proposed model of instructional design and development based on engineering creative problem solving principles to develop creative thinking skills of undergraduate engineering students*. Chulalongkorn University, Bangkok.

Seehamat, L., Sarnrattana, U., Tungkasamit, A., & Srisawasdi, N. (2014). Needs assessment for school curriculum development about water resources management: A case study of Nam Phong Basin. *Procedia - Social and Behavioral Sciences*, 116, 1763-1765. DOI: 10.1016/j.sbspro.2014.01.469

Thuneberg, H., Hautamäki, J., & Hotulainen, R. (2014). Scientific reasoning, school achievement and gender: A multilevel study of between and within school effects in Finland. *Scandinavian Journal of Educational Research*, 1-20. DOI: 10.1080/00313831.2014.904426

Vallverdú, J. (2014). What are simulations? An epistemological approach. *Procedia Technology*, 13, 6-15. DOI: 10.1016/j.protcy.2014.02.003

Voss, J. F., & Means, M. L. (1991). Learning to reason via instruction in argumentation. *Learning and Instruction*, 1, 337-350.

Weber, D. N., Hesselbach, R., Kane, A. S., Petering, D. H., Petering, L., & Berg, C. A. (2013). Minnows as a classroom model for human environmental health. *The American Biology Teacher*, 75(3), 203-209. Retrieved from <http://abt.ucpress.edu/content/75/3/203.abstract>

Wongwanich, S., Sakolrak, S., & Piromsombat, C. (2014). Needs for Thai teachers to become a reflective teacher: Mixed methods needs assessment research. *Procedia - Social and Behavioral Sciences*, 116, 1645-1650. DOI: 10.1016/j.sbspro.2014.01.450

yavuz, o., parzych, j., & generali, m. (2017). a systematic approach to exploring college and career readiness program needs within high-poverty urban public schools. *Education and Urban Society*, 51(4), 443-473. DOI: 10.1177/0013124517727054

Zendler, A., & Greiner, H. (2020). The effect of two instructional methods on learning outcome in chemistry education: The experiment method and computer simulation. *Education for Chemical Engineers*, 30, 9-19. DOI: 10.1016/j.ece.2019.09.001

Zhang, X., Anderson, R. C., Morris, J., Miller, B., Nguyen-Jahiel, K. T., Lin, T.-J., Hsu, J. Y.-L. (2015). Improving children's competence as decision makers: Contrasting effects of collaborative interaction and direct instruction. *American Educational Research Journal*. DOI: 10.3102/0002831215618663

Zhu, M., Liu, O. L., & Lee, H.-S. (2020). The effect of automated feedback on revision behavior and learning gains in formative assessment of scientific argument writing. *Computers & Education*, 143, 103668. DOI: 10.1016/j.compedu.2019.103668