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Abstract 
 
The COVID-19 vaccine coverage in Indonesia remains low, with uneven distribution across 
Java, while COVID-19 cases continue to pose a public health concern. This study seeks to 
develop a spatial model using the Social Vulnerability Index (SVI) approach to identify the 
spatial pattern of COVID-19 vaccination and the factors influencing it in Java. The study 
adopts an ecological design with a spatial approach, encompassing 118 districts/cities. The 
dataset used in this research focuses on the coverage of COVID-19 vaccination for the second 
dose, spanning from March 15, 2021, to January 11, 2022. Spatial statistical techniques such as 
spatial autocorrelation and Geographically Weighted Regression were employed to analyze 
the data. The findings reveal that the Human Development Index, unemployment rate, and 
housing conditions significantly impact the spatial distribution of COVID-19 vaccine 
coverage, indicating the presence of spatial interaction among regions. Socioeconomic factors 
emerged as key variables influencing the study outcomes. Given that enhancing the 
community's economy requires time, interventions tailored to the prevailing conditions are 
necessary. Therefore, interventions to increase COVID-19 vaccine coverage should prioritize 
health promotion efforts, particularly in areas with low socioeconomic conditions. 
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Introduction 
 
The coronavirus (COVID-19) has developed into a worldwide pandemic. Almost all countries 
worldwide have cases of COVID-19, which continue to increase. This virus spreads quickly 
and widely because it can be transmitted through human-to-human contact. Vigilance against 
COVID-19 is a concern for all affected countries due to its rapid and massive spread. COVID-
19 is a highly contagious and pathogenic viral infection caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, and spread 
worldwide (Babu et al., 2021; Eryando et al., 2020; Faisal et al., 2022). 
 
Based on the situation of the spread of COVID-19, which has almost reached all provinces in 
Indonesia, with the spread of COVID-19 cases concentrated on the island of Java (Widiawaty 
et al., 2022), the majority of patients (67.2%) in Indonesia were from Java Island (World Health 
Organization, 2023). The pandemic has had a significant psychosocial impact. Health anxiety, 
panic, adjustment disorders, depression, chronic stress, and insomnia are the leading causes. 
Misinformation and uncertainty cause panic in everyone, especially older adults. It cites the 
social isolation of older adults as a ‘serious public health problem’ because of their bio-
psychosocial vulnerability (Banerjee, 2020). 
 
Vaccine hesitancy, according to the World Health Organization (WHO), refers to delays in 
receiving or refusing a vaccine even though vaccine services are available (MacDonald, 2015). 
The average acceptance rate of COVID-19 vaccines is relatively low worldwide, especially in 
Indonesia (Arumsari et al., 2021; Triwardani, 2021; Utami et al., 2022; Yufika et al., 2020). Data 
from the Ministry of Health (2022) shows that the target for the older population to be 
vaccinated was nearly 21.6 million people. Data obtained as of April 2, 2022, showed that the 
achievement of COVID-19 vaccination for older adults had not been completed, with the first 
vaccination totaling just over 17 million people, the second dose of slightly more than 13 
million people; and the third dose totaling nearly 2.4 million people. In various COVID-19 
polemics in mid-January, precisely on January 13, 2022, the COVID-19 vaccination program 
in Indonesia began to be carried out. The level of trust in the COVID-19 vaccine was one of 
the reasons for hesitation to take the COVID-19 vaccine, the lack of public information about 
vaccine safety, and distrust of the health system, especially among health circles and systems, 
especially among the community (Soares et al., 2021). 
 
Comprehensive and evenly distributed vaccination coverage globally was urgently needed to 
stop the COVID-19 pandemic, making it more vulnerable to transmission of the SARS-CoV-2 
virus. However, research on vaccines in developing countries is still limited. This could be 
due to developing countries with less capacity to introduce new vaccines (Nichter, 1995) and 
the difficulty of convincing the public about the importance of COVID-19 vaccination to stop 
the spread of SARS-CoV-2. Acceptance of vaccinations is the norm in most populations 
globally. A small number refuse some vaccines but agree with others, and some delay or 
receive vaccinations but are unsure about doing so (MacDonald, 2015). 
 
Previous studies have shown a significant impact of socioeconomic factors on vaccination 
(communicable disease), regardless of pre-existing risk factors (Endrich et al., 2009). Another 
study explored the spatial relationship between the incidence of COVID-19 and 
environmental, socioeconomic, and demographic variables and found that income inequality 
could explain the considerable variance in COVID-19 (Endrich et al., 2009; Lee & Huang, 2022; 
Mollalo & Tatar, 2021). 
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Indonesia is a Southeast Asia with relatively low vaccine coverage and high vaccine 
uncertainty (Harapan et al., 2020; Syiroj et al., 2019; Yufika et al., 2020). Several spatial models 
have previously been used to analyze and model COVID-19 vaccine uncertainty regarding 
vaccine coverage and socioeconomics (Hanifa et al., 2022; Mollalo & Tatar, 2021; Soares et al., 
2021). 
 
The Centers for Disease Control and Prevention (CDC) and Agency for Toxic Substances and 
Disease Registry (ATSDR) (2022) developed a Social Vulnerability Index (SVI) to assist health 
workers in supporting the health of the most vulnerable during public health emergencies or 
the COVID-19 pandemic. The SVI assesses community resilience to outbreaks of public health 
problems at risk for public health crises (Flanagan et al., 2011; Rivera & Mollalo, 2022). The 
SVI consists of socioeconomic status, with one of the country’s socioeconomic indicators being 
the poverty rate of its population. The Indonesian Central Bureau of Statistics states that the 
poverty rate can be measured using the level of income, level of expenditure, and a 
combination of both. This shows that the SVI approach is very appropriate for this study.  
 
This study aims to provide an overview of the coverage of the second dose of provincial 
COVID-19 vaccination in districts/cities on each island of Java. The administrative area 
analysis unit in Indonesia for district and city [kabupaten] forms a province administrative 
area. In this study, the kabupaten was used as a spatial analysis unit to obtain the spatial 
interaction of the COVID-19 vaccine. 

 
Materials and methods 
 
Study area 
 
The research area was all districts/cities in Java Island, which included six provinces: Banten, 
DKI Jakarta, West Java, Central Java, Yogyakarta, and East Java. The province of West Java 
has the highest population, at approximately 48.8 million people (31.9%). In contrast, the 
province with the highest annual population growth rate is the province of Banten at 1.76%, 
and the highest population density is in the province of DKI Jakarta at 15,976 per km2. Of the 
total area of the six provinces, East Java province has the largest area of 47,803,049 km2 
(36.93%), while the lowest is DKI Jakarta with 664,001 km2 (0.62%). The value of the Human 
Development Index (HDI) in Indonesia in 2021 was 72.29, with the provinces with the lowest 
scores being East Java (72.14) and Central Java (72.16). 

 
Sampling designs and methods 
 
This study aimed to obtain spatial modeling and determine the pattern of COVID-19 
vaccination coverage and the factors that affect COVID-19 vaccine coverage using indicators 
from the SVI. This research uses an ecological study design with a spatial approach. Ecological 
models serve various purposes, from illustrating ideas to parameterizing complex real-world 
situations. They are used to make general predictions for statistical and spatial analysis, the 
development of which is a statistical approach designed to test spatial autocorrelation to 
obtain spatial patterns (Koenig, 1999; Legendre & Fortin, 1989). 
 
This study used spatial analysis employing secondary data, data from the routine registration 
of the district and city Health Office. This study also used district and city-level data to map 
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the distribution of risk and identify the spatial SVI of the COVID-19 vaccine in six provinces 
consisting of 118 districts/cities on the island of Java. The population in this study was the 
entire population in each district and city on the island of Java, and the research sample was 
all data on cases of COVID-19 and the vaccine coverage of both district and city residents on 
the island of Java. 

 
Data management and analysis 
 
This study used data from the daily COVID-19 and vaccine status reports by the Indonesian 
Ministry of Health, obtained from the official website of the Indonesian Ministry of Health 
(https://vaksin.kemkes.go.id/#/vaccines). On the Ministry of Health website, data can be 
selected on COVID-19 vaccination coverage for each dose and data on cases of COVID-19 in 
every district and city on Java Island; the data is updated daily based on the situation in the 
field. Data on COVID-19 and the second vaccine status were taken from March 15, 2021, to 
January 11, 2022. 
 
The SVI is a concept developed by the CDC. The SVI consists of 15 indicators and is grouped 
into four groups of vulnerabilities: socioeconomic status, household composition, disability, 
minority status and language used, housing, and transportation, but it does not use the 
variables of gender and age. The SVI data was obtained from the Badan Pusat Statistik (BPS) 
[Central Statistics Agency] per province in 2021, which is secondary data that can be accessed 
at https://www.bps.go.id/publication.html. The Provincial Statistics Agency is a provincial 
statistical agency tasked with providing several socioeconomic and population indicators for 
the province. Since this study used secondary data on all provincial-level indicators derived 
from published national and provincial reports, ethical approval was not required for this 
study. 
 
The dependent variable in this study is the COVID-19 vaccine in each district and city in the 
form of percentage coverage of the second vaccine in each province. District-level indicators 
associated with COVID-19 vaccine hesitation (second dose) were selected based on previous 
research on contributing factors (Faisal et al., 2022; Lee & Huang, 2022) using an approach 
from the SVI-CDC and COVID-19 case variables. The theory presented by SVI-CDC is 
socioeconomic status, household composition and disability, minority status and language, 
housing type, and transportation (Flanagan et al., 2011).  
 
For this study, only socioeconomic status was selected, namely the result index number of the 
HDI. The HDI is a composite variable of life expectancy, school year expectancy, average 
length of schooling, and per capita expenditure figures (Al Rifai et al., 2021). Population 
poverty variables include data on the percentage of low-income families (Fauzi & Paiman, 
2020; Soares et al., 2021) and unemployment (Gangopadhyaya & Garrett, 2020). The 
household variable uses data on the percentage of elderly, the percentage of ownership of 
health insurance BPJS Health Contribution Assistance Recipient program (Cordes & Castro, 
2020; Gangopadhyaya & Garrett, 2020), and the housing type variable uses data on the 
percentage of house area that is less than 19 m2 (Al Rifai et al., 2021; Barry et al., 2021). 
Moreover, the independent variables utilized in this study, including the number of COVID-
19 cases per province, are consistent with those employed in previous studies documented in 
the existing literature (Cordes & Castro, 2020; Kang et al., 2020). 
 
Data analysis was performed with descriptive statistics to present each variable’s mean, 
standard deviation (SD), minimum, and maximum values. The correlation between each 
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independent and COVID-19 case was tested using the Pearson correlation or Spearman’s 
Rank (Eryando et al., 2020). 
 
The spatial analysis used Local Moran's I to identify the spatial autocorrelation and local 
autocorrelation of the COVID-19 risk score. Global Moran’s I inform the data’s spatial 
dependence or independence (Anselin & Getis, 1992; Buyong, 2007). 

(1) 
 
Where (I) is Moran’s Index, Z (I) is Moran's I test statistic value. Global Moran’s I value 
(between -1 and 1), which is higher than the expected value of Moran’s I – E(I) observed – 
indicates positive spatial autocorrelation (that is, more significant data similarity between 
neighboring locations or clustering of high and low values in the data set). The results of the 
Moran Index value show the distribution pattern of the variables if the value I > E(I) has a 
clustered spatial pattern and if the value I < E(I) has a spreading pattern. However, suppose 
the Global Moran’s I value is lower than E(I). In that case, it indicates a negative spatial 
autocorrelation (i.e., difference or dispersion of high and low values in the data set). Spatial 
autocorrelation was also evaluated with Global Moran's I-significant p-value (p < .05) using 
999 permutations criteria. 
 
Furthermore, Local Moran’s I, or Local Indicator Spatial Autocorrelation (LISA), can test 
Moran’s I for each district. The findings from the LISA indicate whether the values of the 
observed variables in a given area have a statistically significant spatial autocorrelation with 
values at other locations (that is, they are related to, have an influence on, or are affected by 
the values of other locations). This study applied LISA to identify areas with high-low risk 
categories for COVID-19 vaccine hesitation and areas with low-high categories. The High-
High region category in Quadrant I explains that the region has high cases and is surrounded 
or adjacent to other areas with high cases. Quadrant II has a Low-High type where areas with 
low cases are surrounded or adjacent to areas with a high number of cases. The Low-Low type 
in Quadrant III explains that areas with a low number of cases surround areas with a low 
number of cases. High-Low type in Quadrant IV means that areas with high cases are 
surrounded by areas that have a low number of cases (Buyong, 2007).  
 
This study used Geoda 1.8.10 to perform spatial analysis. Moran’s Index Map and LISA Map 
only consider areas where the Moran index is significant (p < .05). 
 
Geographically Weighted Regression (GWR) is a linear regression model for continuous 
response variables considering location aspects. The GWR model is a global linear regression 
(OLS) model development. The GWR model is a local linear regression model that generates 
estimates of localized regression model parameters for each point or location where the data 
is collected. In the GWR model, the dependent variable Y is predicted by an independent 
variable where each regression coefficient depends on the location where the data is observed 
(Fotheringham et al., 2002). The GWR model can be formulated as follows, 
 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝑥𝑖𝑘
𝑝
𝑘=1 𝛽𝑘(𝑢𝑖, 𝑣𝑖) + 𝜀𝑖; i=1,2,…,n (2) 

 
 
While; 

𝑦𝑖   : the “I” response variable of observation value 
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𝑥𝑖𝑘 : the “k” independent variable of the observation value on the “I” 
observation 

𝛽0(𝑢𝑖, 𝑣𝑖) : GWR regression model intercept value  
βk : regression coefficient 
ui, vi : The coordinates (latitude, longitude) of the “I” location 
εi  : [ε1 , ε2 ,…, εn]T ~ in (0,σ2)  

 
One of the most commonly used weighting functions is the fixed bi-square function (Gaussian 
Distance Function). This function is used in the GWR model if the distance function is 
continuous and monotonically descending. 
 
This study used district or city-level data available in the public domain; therefore, ethical 
approval was not required.  

 
Results 
 
Characteristics of COVID-19 cases and coverage of the second dose of 
COVID-19 vaccine 
 
The distribution of COVID-19 cases per month on Java Island (except in Kepulauan Seribu 
District) from March 15, 2021, to January 11, 2022, can be seen in Figure 1. The peak of the 
wave of COVID-19 cases occurred in July–August 2021 and rose again in January 2022. In July 
2021, the Delta variant of COVID-19 (G/452R.V3) was found (Cahyadi et al., 2022; Dyer, 2021). 

 
Figure 1: Number of COVID-19 Cases by Month in Java 
 

 
 
The percentage of second-dose vaccination achievement in 118 districts/cities in Java Island 
was classified from 45.27–215.5%, with details in as many as 44 districts/cities falling into the 
“very low” category (45.27–79.33%). Most areas fell into the “low” category, with as many as 
63 districts/cities. There were only two cities classified as “very high” (181.53–215.5%), 
namely Central Jakarta (DKI Jakarta province) and the City of Yogyakarta (province of the 
Special Region of Yogyakarta). Figure 2 shows that the coverage of the second dose of vaccine 
is clustered in the west of the island of Java. 
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Figure 2: The Coverage of the Second Dose of the Vaccine 
 

 
 

Table 1 shows the independent variables’ mean, standard deviation, and minimum and 
maximum values. Several independent variables were also found to have a statistically 
significant correlation with the coverage of the second dose of vaccine (p value < .05), with a 
correlation ranging from low to moderate. Several variables included in the SVI, namely the 
HDI (r = 0.713), poverty (r = -0.480), housing (r = 0.515), and the proportion of COVID-19 cases 
(r = 0.357), were statistically significantly correlated with the COVID-19 vaccine. However, 
there was no correlation between unemployment, health insurance, and older adults related 
to COVID-19 vaccine coverage. 
 

Table 1: Statistical Correlation Results 
 

Variables Mean (SD) Min; Max r p value 

Dependent Variable     
Vaccine second dosed (%) 87.77 (22.67) 45.27; 215.60   

Independent Variables     
Socioeconomic characteristics     

Human Development Index 72.96 (5.35) 62.80; 87.18   0.714 .0001* 
Poverty (%) 10.72 (4.52) 2.58; 27.86 -0.480 .0001* 
Unemployment (%)   5.10 (7.63) 0.22; 45.62  0.012 .894 

Household     
Health insurance (%) 38.39 (11.34) 13.59; 74.88 -0.098 .291 
Elderly (%) 7.90 (6.31) 0.27; 26.53  0.030 .749 

Housing     
House area < 19 m2 (%) 3.16 (5.83) 0.10; 34.16  0.515 .0001* 

COVID-19      
COVID-19 cases (%) 5.08 (7.39) 0.29; 32.78  0.357 .0001* 

Note: m2 = square meters; SD = standard deviation; Min = minimum value; Max = maximum value; 
r=correlation coefficient; p value = from Spearman’s Rank correlation;(*) significant .05 
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Spatial autocorrelation of COVID-19 vaccine second dose 
 
This study used spatial regression analysis (Geographically Weighted Regression) rather than 
multiple linear regression statistical analysis. The results of the spatial autocorrelation 
analysis showed the percentage number of the second dose of COVID-19 vaccine coverage 
using the rook contiguity weighting. The results of the second dose of COVID-19 vaccine 

coverage had a Moran’s (I) value of 0.202 with p value = .009 (p value =  < .05). This value is 
greater than E(I) = -0.0086, indicating a clustered positive autocorrelation or data pattern with 
similar characteristics at adjacent locations, as shown in Figure 3. The results of the LISA 
cluster map of the second dose vaccine coverage showed that only 19 districts/cities were 
significant in local spatial autocorrelation (p < .05), and seven districts/cities were in the High-
High cluster; this indicated locations that had high observed values surrounded by locations 
that had high observed values, namely in the provinces of DKI Jakarta (East Jakarta, West 
Jakarta, North Jakarta, South Jakarta, and Central Jakarta) and Yogyakarta (Bantul District 
and Sleman District) provinces. While two districts/cities, namely East Java province (Malang 
District) and Central Java province (Tegal City), were included in the High-Low category, this 
shows that locations with low observed values surround locations with high observation 
values.  
 

Figure 3: LISA Vaccine Coverage Second Dose 
 

 
 
Spatial model SVI on the second dose of COVID vaccine coverage 
 
Modeling in answering the effect of SVI on hesitations about implementing the second dose 
of the COVID-19 vaccine was carried out using multiple linear regression and Geographically 
Weighted Regression (GWR) approaches. The multiple linear regression analysis results 
showed that the HDI, health insurance, and house area < 19 m2 variables significantly 
influenced the hesitation in implementing the second dose of the COVID-19 vaccine. The 
spatial effect test is seen from the results of the Breusch Pagan value, which shows a p value 
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< .05 (.0001) so that spatial heterogeneity is identified, then GWR modeling is needed where 
there is a random area effect, namely the difference between one location and another. 
 
Table 2 shows the parameter estimates of the GWR model developed using the Adaptive Bi-
square weighting function. Generally, the GWR model provides a second COVID-19 vaccine 
hesitation model that is better than the linear regression model, indicated by a higher adjusted 
R2 value (0.732) and a lower AIC value (217.003). The minimum and maximum values of the 
regression coefficients of the same model selected are shown in Table 2. 
 

Table 2: Spatial Modelling 
 

Variable 
Global Regression 

Geographically Weighted Regression 
(Spatial Kernel: Bisquare Adaptive) 

Estimate p value Min Max 

Intercept 0.000 1 -0.051 -0.007 

HDI 0.339 .001* 0.172 0.390 

Poverty (%) 0.012 .894 -0.023 0.045 

Unemployment (%) -0.089 .350 -0.545 -0.056 

Health Insurance (%) 0.130 .041* 0.080 0.119 

Elderly  0.033 .582 0.047 0.084 

House area < 19 m2 (%) 0.619 .001* 0.329 0.131 

COVID-19 cases (%) 0.020 .835 0.137 0.156 

Model Diagnosis for Linear Regression 

Diagnostics For Heteroskedasticity 

Breusch-Pagan Test p value = .0001   

Diagnostics For Spatial Dependence 

Lagrange Multiplier (Lag) p value = .1231   

Lagrange Multiplier (Error)  p value = .0390   

Model Fit 

AIC 223.659  211.589  

R2 0.660  0.732  

Adjusted R2 0.638  0.692  
Note: AIC = Akaike Information Criterion; m = meters; Min = minimum value; Max = maximum 

value;(*) significant .05 

 
Based on the results of the GWR modeling of the second COVID-19 vaccine in each district 
and city, there were only three significant variables, namely HDI, unemployment, and house 
area < 19 m2. The details of these three variables can be seen in Figure 4. The HDI and 
unemployment are variables dominant in Central Java Province (35 districts/cities), 
Yogyakarta Special Region (5 districts/cities), and most of East Java provinces (37 
districts/cities). Meanwhile, the house area variable < 19 m2 was only found in West Java (2 
districts) and East Java (11 districts). The GWR approach’s modeling results produced 
different spatial models in each district and city. Figure 4 (a–c) shows spatially significant 
variables. The R2 value in Figure 4d shows that the central part of the island of Java had a 
high R2 value, meaning that the GWR model in this district/cites was a fit model. 
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Figure 4: Significant Variables in Districts/Cities 
 

  
a. HDI b. Unemployment 

  

c. Housing d. R2 Value 

 
Discussion 
 
Since early 2020, cases of COVID-19 have spread to more than 188 countries worldwide, 
affecting more than 106 million people and causing more than 2.3 million deaths (World 
Health Organization, 2023). The SARS-CoV-2 virus significantly impacted the global economy 
due to its highly infectious nature and the resulting implementation of social distancing 
measures and Large-Scale Social Restrictions (Pembatasan Sosial Berskala Besar [PSBB]), 
which aimed to mitigate the death rate (Flaxman et al., 2020; Leung et al., 2020). In early 2021, 
with the development of several vaccines with clinically proven efficacy and safety (Birhane 
et al., 2021; Thanh Le et al., 2020), significant challenges regarding the COVID-19 response 
were overcome to ensure timely mass vaccination and acceptance by all residents (Schaffer 
DeRoo et al., 2020; Wang et al., 2020). Vaccines are a way to actively increase a person's 
immunity to an antigen (from germs, viruses, or bacteria) so that when later exposed to the 
same antigen (germ), the person already has antibodies so that disease does not occur, where 
the aim is to prevent certain diseases from occurring on someone (Arumsari et al., 2021; 
Harapan et al., 2020). At that time, the COVID-19 vaccine was already available in Indonesia. 
The government had started a vaccination program to break the chain of the spread of 
coronavirus infection and suppress the number of COVID-19 cases, which was increasing.  
 
The results of this study showed that the percentage of achievement of the second dose of 
COVID-19 vaccination in 118 cities/districts in Java was the highest at 74–86%. The first 
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lowest vaccine coverage in Java was in Banten Province (Serang City and Lebak District) and 
East Java Province in Pamekasan District. The results of the LISA analysis showed that East 
Java province has a Low-Low cluster, where districts with low coverage surround districts 
with low coverage. For example, residents in urban-rural areas may face socioeconomic 
challenges, including substantial barriers to accessing healthcare services (Apparicio et al., 
2008; Schnake-Mahl & Sommers, 2017). Coverage of COVID-19 vaccination in rural areas is 
lower than in urban areas, and people in rural areas are more likely to travel outside their area 
of residence for vaccination (Barry et al., 2021; Murthy et al., 2021). Efforts to increase 
vaccination coverage could focus on areas that are more vulnerable in terms of socioeconomic 
and household composition while adapting interventions based on urban areas, and vaccine 
hesitancy in rural areas is a significant obstacle that public health practitioners, health care 
providers, and local partners to achieve vaccination equality (Murthy et al., 2021). 
 
The GWR modeling results show that hesitations about implementing the second COVID-19 
vaccine are influenced by SVI, namely the HDI, unemployment, and house area < 19 m2. The 
provinces of Central Java, the Special Region of Yogyakarta, and East Java have the highest 
number of districts/cities. Based on data from the BPS in 2022 shows that the provinces of 
East Java (72.14) and Central Java (72.16) are below the value of the Indonesian HDI (72.29), 
while the province of the Special Region of Yogyakarta (80.22) has an index value of above 
the Indonesian value. The interesting thing about the Special Region of Yogyakarta Province 
is that, despite the high HDI rate, it is a significant variable in the SVI in the second COVID-
19 vaccine. If the HDI score is high, it usually indicates that the socioeconomic condition of 
the population is in a good category. Still, in this study, the SVI for the second COVID-19 
vaccine shows a statistically significant number, which means that a high HDI number does 
not always indicate the population's well-being. In addition to HDI, health and 
sociodemographic indicators can provide meaning related to vaccination. 
 
The SVI variable regarding housing that has a spatially significant value to the coverage of 
the second COVID-19 vaccine is the condition of the house area, which is less than 19 m2. Lack 
of housing structure and access to minimal resources, such as water and basic sanitation, both 
on the outskirts of big cities and in cities in the country's interior, can increase the risk of 
disease from COVID-19 (de Souza et al., 2020). A study analyzed the determinants of poverty 
by measuring the probability of a household being poor by finding that household 
characteristics such as housing conditions significantly affect the status of poor households in 
Indonesia (Rini & Sugiharti, 2017). 
 
Vaccine hesitancy refers to a reluctance to receive vaccines, even though vaccination services 
are available and easy to access. The problem arises when misinformation about vaccines 
spreads in the community (Wiyeh et al., 2018). Such contextualized vaccine skepticism 
research is critical to ensuring the effectiveness, efficiency, and equity of vaccination services 
(Wiysonge et al., 2022). 
 
Seven districts/cities achieved second dose vaccination in the “High-High” Quadrant, where 
five districts/cities came from DKI Jakarta Province. Quadrant I (High-High) is an area with 
a high vaccination rate surrounded by areas with a high vaccination rate. The spatial model 
further shows that vaccine indecision among residents of one region is directly related to 
vaccine indecision in nearby areas. In line with findings of spatial clustering in vaccine 
acceptance (Lee & Huang, 2022; Valckx et al., 2022). As with DKI Jakarta, the nation’s capital 
and government center make it easier for local governments to carry out the second 
vaccination dose. It has resulted in the districts/cities around DKI Jakarta also increasing the 
coverage of the second vaccine. The ease of accessibility makes distributing vaccines in several 
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districts around the capital effortless. Besides that, these districts/cities do not have a shortage 
in general. This will improve the health status of the community for the better because of 
access to health services that are getting better (Faisal et al., 2022; Mollalo & Tatar, 2021). 
 
This research only discusses areas in the “High-Low” and “Low-High” categories because 
these two areas are outlier areas, meaning that these areas are the focus of implementing 
programs for these two categories. In contrast, areas with “Low-Low” and “High-High” 
categories are areas that have categories that are in accordance with their neighbors, where 
areas with high scores will affect the surrounding area (also affected) as well as areas with the 
“Low-Low” category. The results of the LISA analysis show that some districts/cities fall into 
the “High-Low” and “Low-High” categories. The two categories are included in the district 
and city, with the outlier category (Park et al., 2016). Districts/cities that fall into the “High-
Low” category are Malang district in East Java province and Tegal City in Central Java 
province. It showed that the Malang district has no influence on the surrounding area and the 
City of Tegal and that the coverage of the second COVID-19 vaccine in the two provinces does 
not show any neighborhood effect. The high coverage of the second COVID-19 vaccine in the 
Malang district is because the health center team carries out vaccination activities “door to 
door,” especially for older adults, so the vaccine coverage target can be met (Rufaindah et al., 
2021) 
 
The results of GWR modeling, HDI variables, unemployment, and house area < 19 m2 are 
significant variables in several districts/cities. The HDI and unemployment variables are 
found in all districts/cities in Central Java and Yogyakarta Provinces, mostly (80.43%) in East 
Java Province. The two variables are categorical socioeconomic variables of the SVI. The GWR 
model is expected to explain geographic characteristics in the health sector by exploring 
socioeconomic phenomena that vary by region (Park et al., 2016). Socioeconomics is a variable 
that influences the coverage of the second COVID-19 vaccine. Three provinces are located far 
east of the state capital DKI Jakarta. Those far from the capital will likely face socioeconomic 
problems and substantial barriers to accessing health services (Barry et al., 2021). Regional 
economic variables (HDI and unemployment) are essential indicators for vaccine distribution 
because they directly relate to health infrastructure. High HDI scores and better public welfare 
can reduce the growing problem of vaccine hesitation and help countries vaccinate people in 
less time (Roghani, 2021). 
 
The results of this study, SVI indicator numbers, and differences in COVID-19 vaccination 
coverage continue and increase from time to time, even though access to vaccination is 
expanding. The existence of disparities related to socioeconomic status, household 
composition, and disability, especially in provinces with many districts/cities, will continue 
to increase. Access to COVID-19 vaccines will require focused efforts on increasing coverage 
in high SVI countries and adapting to local population needs, for example, by adding vaccine 
centers or relocating existing vaccine centers in densely populated districts/cities to increase 
coverage (Faisal et al., 2022). Furthermore, efforts could include walk-in vaccination clinics 
and public health messages about the importance of vaccination and the need for community 
intervention to help promote health (Barry et al., 2021; Harapan et al., 2020; Mofleh et al., 2022) 

 
Strengths and limitations 
 
This study used GWR spatial analysis to model COVID-19 vaccine coverage in Java. The GWR 
analysis can estimate the local parameters of the factors related to the coverage of the COVID-
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19 vaccine in each district. It can show the districts/cities that are spatially or locally 
significant. This analysis also considers spatial autocorrelation and data heterogeneity, with 
observations of 118 districts/cities able to show data variation and detect the significance of 
factors associated with COVID-19 vaccine coverage compared to previous ecological studies 
with few observations. 
 
The limitation of this study is that many factors cause the transmission of COVID-19, so this 
study does not discuss the incidence of COVID-19. The time of data collection for COVID-19 
cases and the status of the second COVID Vaccine were analyzed beginning from mid-March 
2021 because data was only available from that date. In secondary data processing, no 
information related to individual vaccination data was obtained, whether based on the 
Identity Card or the area where the vaccination was carried out. In addition, vaccination 
coverage data were also obtained based on comparisons with targets and non-populations. 
Finally, these ecological studies may occur in ecological studies because the results may not 
reflect the individual level experience. All spatial analyzes are prone to regional unit research 
problems; this is due to the personal level data being collected to a higher spatial unit level 
(i.e., district or city level data) (Putra et al., 2022)  

 
Conclusion 
 
Spatial analysis of the second COVID-19 vaccine coverage on the island of Java showed a 
clustered pattern. Spatial modeling results showed that spatially significant SVI variables 
were HDI, unemployment, and house area < 19 m2, and they only existed in three provinces: 
Central Java, Special Region of Yogyakarta, and East Java. Socioeconomic factors of an area 
were still the main issue related to public health. Improving the socioeconomics of the region 
takes time, so to increase the coverage of the COVID-19 vaccine, the most important thing is 
health promotion to the public regarding the importance of the COVID-19 Vaccine. 
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