

The Key Role of Digital Learning Technologies in Shaping and Transforming Modern Teaching Approaches

Narat Wattanapanit^{1*}

^{1*} Faculty of Education, Ramkhamhaeng University, Thailand

*Corresponding Author; e-mail : Narat1904@yahoo.com

DOI : 10.65205/jlgisrru.2025.289014

Received : May 4, 2025; Revised : July 24, 2025; Accepted : August 1, 2025

Abstract

The adoption of digital learning technologies has revolutionized educational methods by moving away from conventional teacher-directed approaches to student-focused learning environments supported by technology. Modern education now offers both new opportunities and challenges as teaching methods evolve to become more interactive and personalized through the help of learning management systems (LMS), artificial intelligence (AI), virtual and augmented reality (VR/AR), and predictive analytics. This study explores the ways digital learning technologies influence modern instructional methods while emphasizing pedagogical innovation, theoretical integration, and future educational technology trends. The research utilized a qualitative methodology that included comprehensive literature reviews and conceptual evaluations of existing digital tools and frameworks like SAMR and TPACK to assess their applications throughout different educational levels. This research gathers evidence from academic publications to examine the advantages and drawbacks of digital technology integration in learning contexts. Research shows digital tools improve teaching effectiveness through personalized learning opportunities and improved accessibility, which leads to better student engagement. Adaptive learning systems and gamified environments serve as tools to develop students' critical thinking and teamwork abilities. The digital divide, alongside teacher readiness issues and data privacy worries, continue to demand strategic interventions and systemic backing. In conclusion, Modern education relies heavily on digital technologies, which function as essential elements within both curriculum delivery systems and student development processes. Achieving successful, equitable deployment of digital technologies requires a comprehensive plan that combines infrastructure development with teacher education and ethical supervision. This research highlights that

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisrru.2025.289014>

continuous development based on proven educational principles is essential for technology to benefit every student.

Keywords : Digital Learning Technologies, Student-Centered Pedagogy, Technology Integration, Educational Innovation

Introduction

Digital technologies have fundamentally reshaped educational spaces by redefining the paradigms of how we teach and learn. The learning environment is no longer limited to physical classrooms as technologies make teaching and learning methods more dynamic and collaborative, providing new opportunities for personalized learning. Since the late 20th century and more rapidly in the 21st century, educational institutions have integrated a range of digital tools into their practices, including computers, tablets, learning management systems (LMS), and interactive whiteboards. Today, modern technologies offer better access to information and enable the use of multimedia resources and simulations as well as virtual collaboration, which can support diverse learning styles and increase student engagement (Selwyn, 2012).

Movements in education at the international level have accelerated the adoption of educational technology, with a focus on digital literacy, open educational resources (OER), and online and blended learning models. As access to the internet became more widespread, educational institutions began offering online courses and degree programs, which enabled learners from around the world to access education (Means et al., 2010). Policy frameworks and funding support, such as the U.S. Department of Education's National Education Technology Plan, have been established in various countries to encourage the integration of digital tools into educational settings.

The global COVID-19 pandemic accelerated the shift to digital learning, with educational institutions around the world implementing remote teaching models. The rapid transition to digital education exposed numerous opportunities and challenges, such as the digital divide and issues with student engagement and assessment in online environments (Bond et al., 2021). The role of technology in education has expanded, prompting researchers and policymakers to explore sustainable approaches to integrating digital tools that promote equitable access while remaining effective and future-proofed.

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

The 21st century is marked by rapid technological, social, and economic changes that demand new skills and competencies from learners. The traditional teacher-centric model of instruction is increasingly recognized as limited in its ability to cultivate the skills necessary for students to succeed in a globalized information and innovation economy. Educational practices must evolve to foster students' critical thinking, creativity, digital literacy, and collaborative problem-solving skills, often referred to as "21st-century skills" (Trilling & Fadel, 2009). Educators are being guided to move away from teaching practices that rely on memorization and passive learning, towards more student-centered approaches that incorporate inquiry-based and interdisciplinary learning.

Student-centered instructional approaches that adapt to individual differences can address the diverse learning needs of students from various cultural, linguistic, and socioeconomic backgrounds. To ensure a quality education, we need to embrace culturally responsive teaching practices in conjunction with differentiated instruction and inclusive education to provide all students with equal access to educational opportunities. Recent advances in educational technology enable personalized learning and engagement opportunities that assist educators in tailoring their teaching practices with data-driven and adaptive methods and platforms (Anderson, 2008). These pedagogical approaches recognize that students learn in different ways and at different paces while emphasizing the importance of nurturing internal motivation and student autonomy.

If teachers don't adapt their instructional practices, students experience greater educational inequities and lack the preparedness to face future challenges. The current workforce requires creativity in addition to digital competencies and a commitment to lifelong learning, which requires schools to help students build these essential skills from a young age. The advancement of AI and automation is making human-centered skills, such as empathy, ethical judgment, and effective communication, increasingly important because machines cannot replicate these skills (World Economic Forum, 2020). In this educational landscape, transformation requires more than simply integrating technology because it demands a fundamental shift in pedagogical approaches to prepare students for the ever-changing world.

Digital technologies are becoming increasingly ubiquitous in educational environments, and they have transformed teaching and learning methods in many

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

educational contexts, which calls for research on their impact on contemporary education. In comparison to traditional instructional approaches, digital learning technologies offer interactive and learner-centered learning environments that can be flexible and personalized to improve student engagement and outcomes. A deeper understanding of these technologies is crucial because it helps educators understand how to best leverage their benefits while mitigating challenges like issues with digital equity and overreliance on technology (Kirkwood & Price, 2014). Empirical evidence on blended and fully online learning models contributes to data-driven decisions that can lead to improved instructional design methods.

Digital technologies extend beyond simply facilitating content delivery and fundamentally challenge teachers' conceptions of how teaching should occur. For example, the use of learning management systems, as well as video conferencing tools and AI-powered tutors, can support learning approaches that prioritize student collaboration and competency-based learning models (Redecker, 2017). Examining their impact can point to potential pathways for transforming education to promote the development of critical thinking, digital literacy, and other lifelong learning skills needed for today's learners. The rethinking of pedagogical approaches is called for after the pandemic, as remote and hybrid learning options are likely to remain as a viable alternative to, or a complement for, traditional face-to-face classroom instruction.

Investigating digital learning technologies also leads to discovering evidence-based teacher training approaches that are needed for the successful implementation of digital tools. In addition to technological proficiency, educators need to have a pedagogical understanding of these tools to be able to effectively implement them for teaching purposes (Ertmer & Ottenbreit-Leftwich, 2010). In particular, research on the effects of digital tools on teaching approaches and classroom management can help teachers develop models that lead to better learning outcomes while also linking the use of technology with student success.

Research Objectives

This paper aims to examine how digital learning technologies shape and transform modern teaching.

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

 Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.
<https://doi.org/10.65205/jlgisrru.2025.289014>

Literature Review

1. Definition of Digital Learning Technologies.

Digital learning technologies consist of various tools and platforms that leverage digital resources to support and improve educational teaching and learning processes. The digital learning technologies include both physical devices like laptops and tablets as well as interactive whiteboards and software applications such as learning management systems (LMS), educational apps, virtual simulations, and online collaboration tools. Educational technologies aim to expand access to educational resources while delivering personalized instruction and accommodating multiple learning formats, including synchronous and asynchronous learning as well as blended and completely online education (Bates, 2015).

Digital learning technologies offer more than just content dissemination and provide tools for interaction, assessment, feedback, and educational decision-making based on data. Educators use platforms such as Moodle and Google Classroom to digitally create, distribute, and assess assignments while Kahoot!, Quizlet, and Padlet enhance student engagement with interactive learning experiences. Current developments in artificial intelligence (AI), virtual reality (VR), and adaptive learning systems revolutionize educators' methods for differentiation and formative assessment (Johnson et al., 2016). These tools support efficient learning by offering immediate feedback and personalized adjustments according to student performance data.

Educators, policymakers and researchers need to understand the definition and scope of digital learning technologies in order to develop effective teaching strategies and digital literacy programs. The essential integration of digital tools into global education systems demands a well-defined conceptual framework to guide their purposeful implementation and alignment with educational objectives instead of treating them as supplementary tools (Laurillard, 2012). A clear definition of these technologies establishes groundwork for research on their effects regarding teaching methods and student involvement as well as educational fairness.

Digital learning technologies now serve as vital elements in transforming modern educational approaches. When viewed broadly digital learning technologies represent an expansive collection of tools and platforms which boost teaching effectiveness as well as enable personalized learning while improving accessibility across multiple educational

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

environments. The ongoing transformation of global education systems demands a deep understanding of technology roles and characteristics to meet new educational demands. The careful implementation of educational technologies not only improves student participation and learning outcomes but simultaneously readies teachers and students to thrive in today's digital and knowledge-based society.

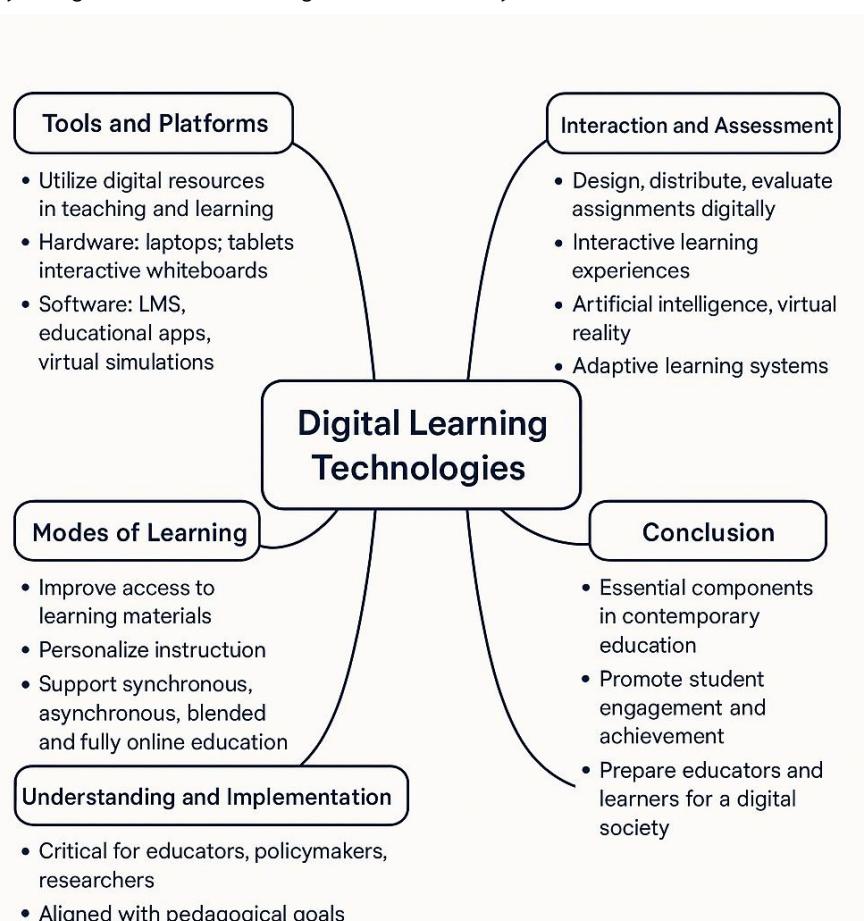


Figure 1 Definition of Digital Learning Technologies

2. Overview of Modern Teaching Approaches

Teaching strategies in the 21st century have moved away from traditional teacher-centered instruction to adopt flexible student-centered approaches that incorporate digital technologies and data-based strategies. Contemporary educational methods aim to boost student involvement while developing critical thinking skills and accommodating various learning styles and requirements. Blended learning alongside flipped classrooms and personalized learning plays a key role in this educational evolution through their shared focus on active learning practices and student control of learning while strategically

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

 Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.
<https://doi.org/10.65205/jlgisrru.2025.289014>

incorporating technology into teaching methods (Horn & Staker, 2015). These educational models work to ready students for a complicated digital age through the synchronization of teaching methods and practical skills.

Through blended learning students receive face-to-face instruction alongside online learning opportunities which enables them to enjoy traditional classroom interactions as well as flexible digital content access. The blended learning method allows students to explore educational materials individually at their desired speed and simultaneously participate in group discussions and joint projects. Research demonstrates that blended learning results in better academic outcomes and higher learner satisfaction than traditional education methods (Graham, 2013). The model enables teachers to dedicate classroom time to advanced learning activities instead of basic content delivery.

In flipped classrooms students prepare for new material through external resources such as videos or digital readings before class and then engage in discussions and problem-solving activities during class. The flipped classroom model reverses conventional teaching methods by urging students to prepare before class and actively participate during class time. Studies show that flipped classroom approaches enhance student motivation while simultaneously increasing active participation and deepening course material comprehension (Bishop & Verleger, 2013). Effective execution of this educational model demands meticulous planning to secure student responsibility for their pre-class preparation.

Personalized learning modifies educational experiences to meet the unique needs and preferences of each student along with their individual learning speeds. The approach utilizes digital tools like adaptive learning platforms together with learning analytics and differentiated instruction strategies to track student progress and modify teaching methods as needed. This approach effectively bridges learning gaps and fosters equity by enabling targeted student support which relies on performance data analysis (Pane et al., 2015). Through personalized learning students learn to direct their educational paths which helps them develop stronger independent study habits and self-discipline.

The pedagogical landscape has been reshaped through modern teaching methodologies including blended learning, flipped classrooms, and personalized learning which demonstrate major progress in instructional design. Instructional strategies for modern learners become more engaging and adaptable while keeping pace with technological

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

progress through these methods. The potential of these teaching approaches to create a more inclusive and effective educational system exists despite implementation barriers like resource access and educator training.

Table 1 Comparative of Modern Teaching Approaches

Approach	Definition	Key Features	Benefits	Challenges
Blended Learning	Combines face-to-face instruction with online learning activities.	Flexible pacing; access to online resources; in-person collaboration.	Improves performance and satisfaction; efficient classroom use.	Requires technological infrastructure and training.
Flipped Classroom	Students learn new content outside class (e.g., videos) and use class time for active learning.	Pre-class content engagement; in-class problem solving and discussions.	Boosts motivation and deeper understanding; encourages participation.	Needs student accountability and well-structured content.
Personalized Learning	Tailors educational experiences to individual needs using adaptive tools and data analytics.	Customized learning paths; use of data to adjust instruction.	Addresses learning gaps; supports autonomy and equity.	Demands robust data systems and teacher adaptability.

3. Theoretical perspectives on technology integration in education

The process of technology integration in education goes beyond digital tool usage because it requires a foundation in pedagogical methods to achieve significant learning results. Educators use both the SAMR Model which includes Substitution, Augmentation, Modification and Redefinition and the TPACK Framework which encompasses Technological Pedagogical Content Knowledge as widely adopted theoretical structures to guide technology integration. Educational technology models provide systematic approaches for assessing and directing digital tool implementation that enable educators to match instructional objectives with students' requirements.

3.1 The SAMR Model created by Dr. Ruben Puentedura establishes four stages that demonstrate technology integration in teaching. Substitution describes technology implementation at basic levels where tasks remain unchanged in function but are performed through different means like typing an essay instead of handwriting it. Augmentation represents a functional enhancement where educators use tools such as spell-check or commenting in word processors. When reaching advanced levels Modification enables comprehensive task redesign like peer editing through collaborative documents and Redefinition introduces entirely new tasks that were impossible before such as multimedia

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

digital portfolios and global virtual collaborations (Puentedura, 2014). The model prioritizes transforming learning experiences instead of simply digitizing them.

3.2 In contrast, the TPACK Framework, proposed by Mishra and Koehler (2006), focuses on the intersection of three core domains: The TPACK Framework identifies three fundamental domains which consist of Technology Knowledge (TK), Pedagogical Knowledge (PK), and Content Knowledge (CK). Teachers achieve effective technology integration by successfully merging all three educational domains. High TPACK proficiency is shown when a science teacher uses simulations (TK) to teach Newton's laws (CK) via inquiry-based teaching (PK). The framework states that digital tool proficiency alone is inadequate for educators who need to grasp how these tools strengthen teaching methods for specialized subjects and learning environments.

Both models serve distinct yet complementary purposes. The SAMR Model functions as an effective evaluation instrument to analyze technology usage levels and pursue advanced transformations. TPACK serves as an educational framework that supports teacher development and curriculum design through its focus on interdisciplinary knowledge integration. SAMR focuses on evaluating actual technology usage while TPACK examines effective technology integration methods and purposes. The combination of these models creates an evidence-based integration method that enhances instructional rigor while promoting innovation.

When teachers use these models they progress from basic digital substitutions for paper tasks to developing deeper technological applications that promote student collaboration and critical thinking. Students can engage in making documentaries or podcasts with digital tools as an alternative to writing traditional essays which promotes real-world relevance and multimodal literacy skills. Educators who possess robust TPACK knowledge and follow the SAMR framework can make intentional technology choices which enhance student involvement and learning achievements (Hamilton et al., 2016).

Educators require the SAMR Model and TPACK Framework as fundamental theoretical lenses to evaluate and improve their technology integration strategies. Through its progressive transformation view SAMR functions while TPACK dictates that technology selections must match teaching methods and subject matter. Applying these models together results in a complete strategy that develops modern classrooms which incorporate

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

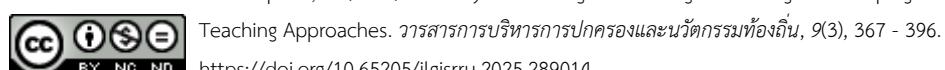
digital resources while fostering student-focused educational experiences. The ongoing use of these models in teacher training and instructional design maintains its importance because education systems now depend more heavily on digital advancements.

Table 2 Comparison of SAMR Model vs. TPACK Framework

Aspect	SAMR Model	TPACK Framework
Purpose	Guides levels of technology integration from substitution to redefinition.	Provides a framework for integrating content, pedagogy, and technology knowledge.
Structure	4 progressive levels: Substitution, Augmentation, Modification, Redefinition.	Three intersecting domains: Technology, Pedagogy, Content Knowledge (TPACK).
Focus	Emphasizes the transformation of learning tasks using technology.	Emphasizes balanced integration of teaching knowledge areas.
Application	Evaluates how deeply technology changes teaching and learning activities.	Guides curriculum design and teacher professional development.
Strengths	Simple and practical for assessing technology use.	Holistic view of teacher knowledge; supports professional growth.
Limitations	Lacks pedagogical and content-specific guidance; can oversimplify integration.	Abstract and complex; difficult to apply without training or examples.

Conceptual Framework

The content allows for the development of a conceptual framework. This research examines how digital learning technologies affect modern instructional methods through their transformative relationship.


The study utilizes two primary theoretical models for its foundation.

- SAMR Model – illustrating how technology can enhance and transform teaching through four levels: Substitution, Augmentation, Modification, and Redefinition.
- The TPACK Framework stresses the combined integration of Technological Skills with Pedagogical Practices and Content Knowledge for effective instructional design.

Core concepts in the framework:

- Digital technologies have evolved through the development of platforms like Learning Management Systems (LMSs), artificial intelligence (AI), virtual and augmented reality (VR/AR), and mobile applications.
- Today's instructional approaches include blended learning methods alongside flipped classrooms and personalized learning techniques.
- Pedagogical transformation and student-centered learning

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

Educational technology presents both positive impacts and constraints in classroom settings.

- Future innovations and strategic adoption

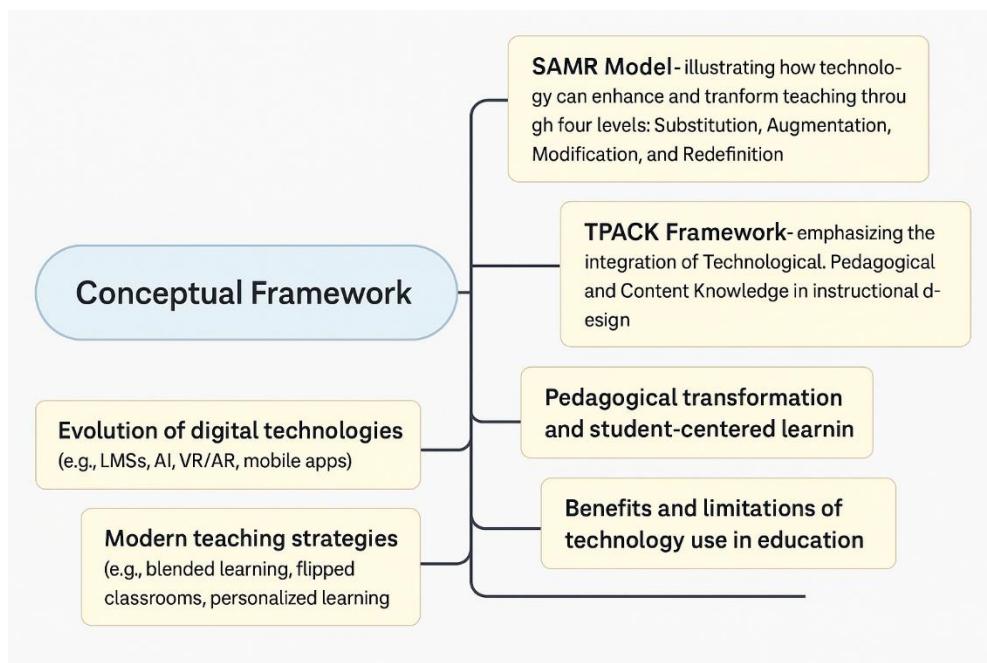


Figure 2 Conceptual Framework

Research Methods

The methodology can be elaborated as follows:

Data Source: The study is document-based and relies on a literature review approach. Academic journals, government reports, books, and prior studies form the primary data sources.

Instrument for Collecting Data: The main instrument is a systematic review protocol, used to collect and analyze existing literature and research findings on digital learning technologies, instructional models (e.g., SAMR, TPACK), and educational trends.

Data Collecting Process: The data collection process involved:

- Selecting peer-reviewed articles, government policy documents, and expert frameworks relevant to educational technology.
- Categorizing content by themes such as definitions, teaching approaches, benefits, challenges, and future innovations.
- Synthesizing data from multiple levels of education (K-12 and higher education).

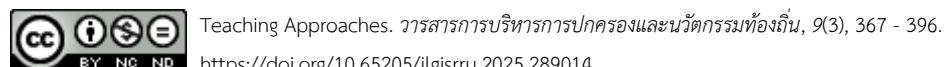
Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.
<https://doi.org/10.65205/jlgisru.2025.289014>

Data Analysis: The data was analyzed using thematic analysis, identifying recurring patterns, trends, and theoretical contributions. The SAMR and TPACK models were used to interpret the extent and quality of technology integration. Key variables were categorized under:

- Type of technology used
- Instructional impact
- Teacher readiness and professional development
- Educational outcomes and equity concerns

Research Results


1. Evolution of Digital Learning Technologies

The evolution of digital learning technologies is part of a broader educational shift away from one-size-fits-all instruction toward more flexible, technology-enabled learning environments. Digital learning tools have long sought to improve or augment instruction in various ways. The concept of Computer-assisted instruction (CAI) became more prominent in the 1960s and 70s with the proliferation of individualized drill-and-practice software programs. EDUCAUSE's interest in using computers in education can be traced back to early efforts like PLATO (Programmed Logic for Automated Teaching Operations) (Woolley, 1994).

Educational software along with CD-ROM-based training became widely used during the 1980s and 1990s which increased access and allowed multimedia features like text, video, and graphics. Reader Rabbit and Math Blaster are examples of popular K-12 educational software for both schools and homes. The cost of personal computers decreased during the same time frame and schools started to create computer labs for instructional purposes. This period established the foundation for the transition from static digital resources to interactive, networked learning environments (Cuban, 2001).

The widespread availability of the internet during the mid-to-late 1990s marked a key transition. Schools began to create websites and use email as their primary communication medium. Learning Management Systems (LMS) like Blackboard and Moodle provided infrastructure for instructors to organize course content and assess student performance and remote connectivity (Coates et al., 2005). The release of these platforms

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisrru.2025.289014>

facilitated scalable digital course delivery that laid the ground for more sophisticated e-learning approaches to emerge.

The rise of Massive Open Online Courses (MOOCs) during the 2000s changed the landscape of online education by offering free high-quality courses from universities to anyone with an internet connection. Platforms like Coursera, edX and Udacity made learning available to a global audience, while structured educational opportunities became available to all (Yuan & Powell, 2013). Despite concerns about low completion rates and limited interaction, MOOCs highlighted the viability of mass digital learning.

The widespread use of mobile devices during the 2010s also led to a proliferation of mobile learning apps. Students can access learning resources on-demand through applications like Duolingo, Khan Academy and Quizlet at any time or place, changing the nature of informal learning. The use of gamification, bite-sized content and interactive activities in these tools resulted in increased user engagement and retention, especially among younger learners (Crompton, 2013).

Virtual Reality (VR) and Augmented Reality (AR) technologies have marked a relatively new turning point in educational technology. Immersive and experiential learning environments which let students explore virtual science labs, historical recreations and 3D anatomy models offer exciting possibilities for learning. Engagement through immersive learning experiences has been shown to enhance both motivation and retention in memory according to findings (Radianti et al., 2020). These technologies are also under increasing scrutiny across many domains including medicine, engineering and special education.

Artificial Intelligence (AI) is the latest advancement in digital learning platforms. Adaptive learning paths, real-time feedback, and automated grading are some of the AI-powered tools that digital learning platforms are starting to integrate. Adaptive and personalized learning at scale to meet students' needs are some of the features of the newest intelligent tutoring systems and chatbots, and research shows these can be done with unprecedented precision (Luckin et al., 2016). AI can be utilized to gather and analyze learning analytics to help inform instructional design decisions and support data-driven teaching methods.

The trajectory of digital learning technologies, from early drill-based software to AI-powered personalized learning platforms, illustrates the ongoing drive for improvements in

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

access, personalization, and engagement in education. Digital tools have evolved to include new functionalities to support educators in meeting students' diverse needs in today's educational landscape. The ongoing rapid technology advancement means that digital tools must be implemented on solid pedagogical principles and considerations of equity, ethics, and effectiveness must guide their use.

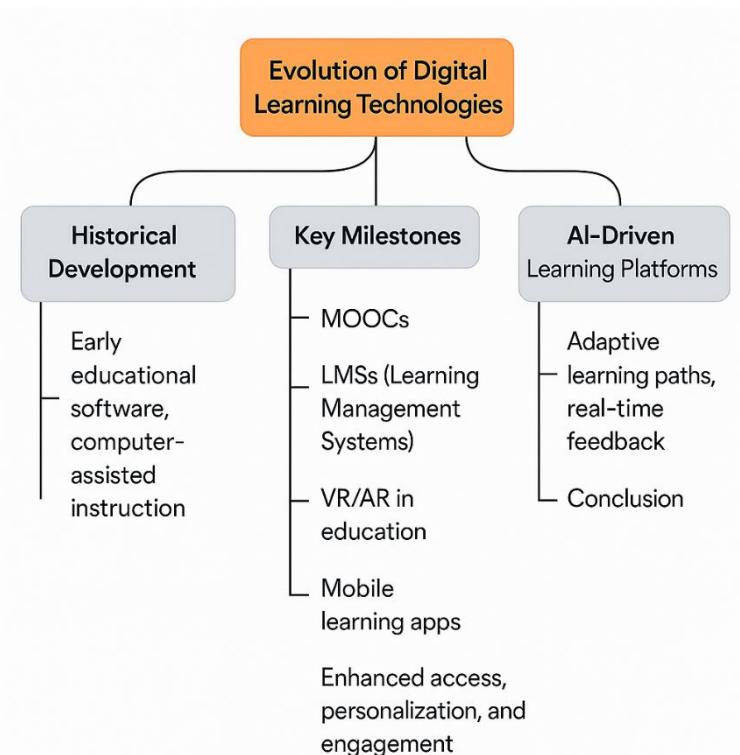
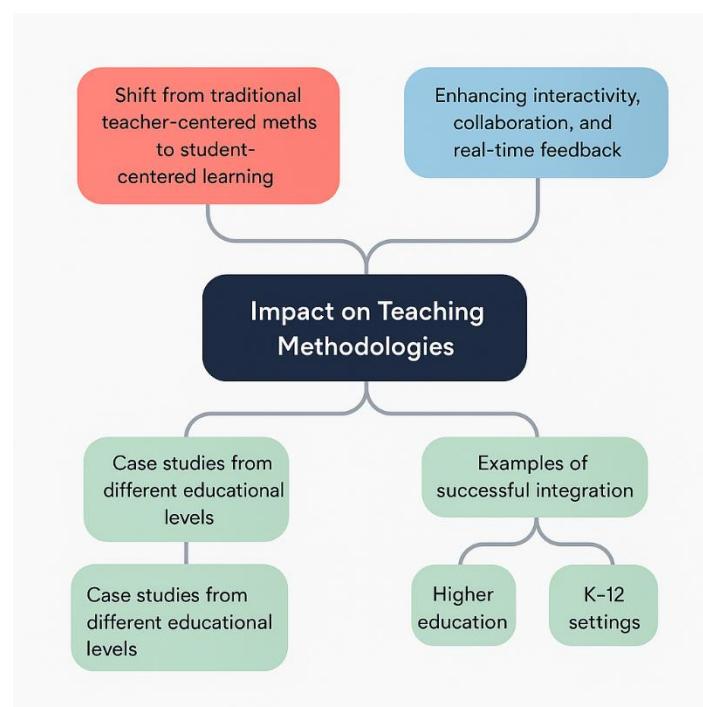


Figure 3 Evolution of Digital Learning Technologies

2. Impact on Teaching Methodologies

The infusion of digital learning technology has catalyzed a paradigm shift, transforming teaching approaches from traditional, instructor-led lectures to dynamic, student-centered learning environments. Traditional education practices place the teacher at the center of the learning process, with the student as a passive recipient of information. New technologies make constructivist and inquiry-based approaches to education possible, in which the learner must be actively engaged and collaborate with peers to co-create their own knowledge. The development of innovative teaching methods have resulted in instructional practices that better meet the needs of individual students, while also becoming more engaging and flexible (Means et al., 2010).

Learning becomes a social, interactive activity with the help of digital technologies. Discussion boards, video conferencing software, shared document creation tools, and game-based learning platforms, engage students in deeper interactions with both content and classmates. Interactive assessment methods and real-time feedback tools like automated quizzes and learning analytics dashboards provide teachers with the information they need to be responsive to student needs and adapt their instructional strategies accordingly (Laurillard, 2012). Learner interaction is structured in ways that foster a learning environment in which students are active producers of knowledge, as opposed to passive consumers.


The centrality of student agency and autonomy is another important component of this educational shift. Digital learning tools contain self-paced modules, choices in assignments and projects, and multimedia resources for exploration of topics. The ability to exercise control over their own learning empowers students to take ownership of their educational experiences and is the guiding principle behind student-centered teaching strategies. Artificial intelligence based adaptive learning platforms offer personalized learning pathways that are customized to align instruction with the individual needs and strengths of the student (Luckin et al., 2016).

Evidence of the effective implementation of digital technologies in education can be found at multiple educational levels. The flipped classroom has become a widely accepted practice in higher education settings where instructors provide lecture materials as homework in the form of videos or readings, and use class time for discussion and problem-solving activities. A study by Bishop and Verleger (2013) found that university-level engineering students reported higher satisfaction and engagement when taught using flipped learning approaches. Post-pandemic, blended learning approaches have become more common in K-12 settings, because they have enabled schools to combine in-person teaching with online instruction.

Elementary school teachers are using communication tools such as ClassDojo and Seesaw to better engage all stakeholders including teachers, students and their parents. The integration of learning platforms that provide for formative assessment in combination with portfolio-based learning and real-time behavior tracking creates a more holistic and flexible approach to teaching (Chou & Block, 2012). Young students also gain proficiency in digital

communication when they are able to create shared documents on collaboration tools such as Google Workspace and peer-review each other's work.

The infusion of digital technology in the educational sphere has brought about a transformation in teaching methods. The pedagogical changes center around creating learning environments that are student-focused while also being interactive and flexible. Teachers now have more tools to meet the diverse needs of 21st-century learners, including real-time feedback mechanisms, collaborative tools, and individualized learning pathways. As technology use in education continues to advance, educators must ensure that their use of digital tools is rooted in strong pedagogical principles to ensure effective and equitable digital integration.

Figure 4 Impact on Teaching Methodologies

3. Benefits of Digital Learning Technologies

Tailored learning: As opposed to other benefits, personalized learning provided by digital learning platforms, makes education unique to the learner. Personalized learning is considered as providing a tailored educational experience to a student based on his/her needs, learning styles and individual progress. Adaptive learning technologies with learning analytics systems and AI-driven intelligent tutoring systems allow educators to track learners in real-time and alter the methods of content delivery as per individual needs (Pane et al.,

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

2015). Students can learn at their own pace and can avail specific support as and when they need it, thus leading to better understanding and sustained engagement with the content.

Enhanced accessibility and inclusivity: The educational environment is more accessible and inclusive for students with digital learning tools. Educational technologies remove learning barriers by providing resources that support multiple learning styles, abilities and languages. Screen readers and captioning as well as voice-to-text functionalities and adjustable font sizes provide accommodations for learners with visual, auditory or motor disabilities. Digital technologies, such as mobile learning platforms, also provide access to education to individuals in remote and underserved communities, thus overcoming geographical and socio-economic challenges to learning (Al-Azawei et al., 2017). Accommodations as such adhere to the Universal Design for Learning (UDL) principles and help to ensure equity in education and learning outcomes.

Promotion of critical thinking and problem-solving: Learning environments that are inquiry-based and interactive, with the help of digital tools, help in developing students' critical thinking skills and problem-solving strategies. Simulations, digital labs, and game-based platforms allow students to address real-world issues and problems that require them to engage in careful deliberation, decision-making, and iterative learning. For instance, platforms such as PhET Interactive Simulations in science learning or Minecraft: Education Edition, as an STEAM learning platform, encourage student exploration and experimentation. Learning experiences in such contexts help to inculcate skills necessary for the 21st century, including logical analysis and synthesis of information as well as creative thinking (Voogt et al., 2015).

Facilitation of communication and collaboration: Communication and collaboration, that are supported by digital tools, also help as the key pillars in promoting higher-order thinking. Digital discussion forums, collaborative documents and video conferencing platforms help to practice asynchronous collaboration for students in geographically dispersed locations, by helping them practice negotiation skills and leadership and group problem-solving. Digital platforms for collaboration, more often than not, resemble the professional toolsets and workflows, thus preparing students to help tackle academic and workplace challenges in their future (Scardamalia & Bereiter, 2014).

Immediate feedback: Digital platforms also offer real-time feedback which allows for a faster learning experience and promotes self-regulatory skills. Learning dashboards, automated assessments and interactive exercises provide learners with immediate feedback on their performance and understanding. This immediate feedback mechanism supports metacognitive development by encouraging students to self-monitor their learning performance and independently identify and address gaps in their knowledge (Black & Wiliam, 2009). The use of such data-driven and timely feedback also allows teachers to differentiate their instruction and provide targeted interventions.

Personalized learning experiences that are inclusive and cognitively engaging, can be created by teachers with the use of digital learning tools. Digital learning tools also support the needs of multiple learners and help to foster cognitive engagement and skills-based learning. In order to leverage the benefits of such technological transformation in education, the tools must be utilized wisely and strategically, to help facilitate truly transformational learning experiences for every learner.

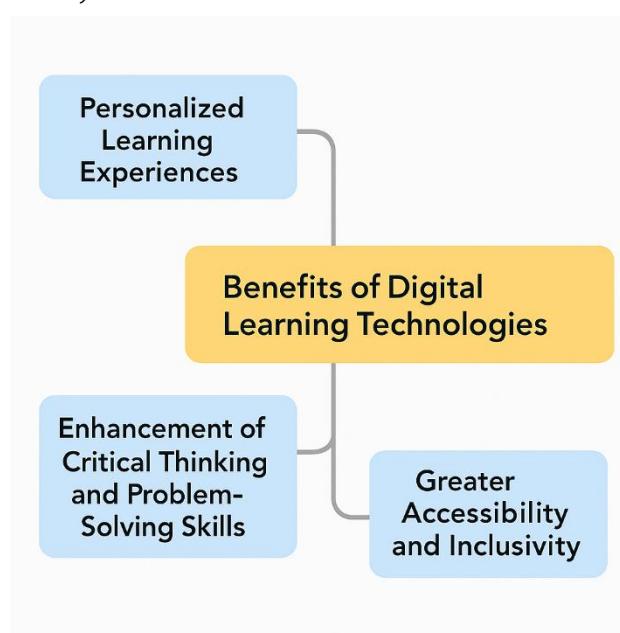


Figure 5 Benefits of Digital Learning Technologies

4. Challenges and Limitations

The implementation of digital learning technologies presents substantial challenges and limitations despite their numerous benefits. The digital divide remains a major concern because it represents the disparity in technology access and internet connectivity between

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

 Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.
<https://doi.org/10.65205/jlgisrru.2025.289014>

various student groups. Students from low-income, rural and marginalized backgrounds suffer most from the digital divide because they often do not have the essential devices or reliable internet access needed for digital learning (van Dijk, 2020). The growing dependence of education on technology makes addressing technology access disparities crucial to achieve equal learning opportunities for all students.

Teacher preparedness combined with professional development gaps stand as another essential barrier beyond access limitations. The training provided to many educators falls short in teaching them how to properly incorporate digital tools into their teaching methods. The rapid transition to online and blended learning models during the COVID-19 pandemic revealed educators' digital skill deficiencies while showing the importance of targeted professional development (Trust & Whalen, 2020). If teachers do not receive adequate support and training they risk underutilizing or misusing educational technology which reduces its effectiveness.

Teaching professionals who have access to technology and training still encounter obstacles in integrating pedagogical strategies effectively. Technology should enhance—not simply replicate—traditional practices. The majority of educators still rely on digital tools for basic substitution instead of transformative applications as defined by the SAMR model. The approach leads to shallow student participation while missing potential paths to advanced learning (Hamilton et al., 2016). Educational integration needs careful alignment between instructional design and learning objectives but educators tend to miss this requirement because of limited time and restricted curriculum adaptability.

Data privacy and student monitoring represent significant concerns in today's educational landscape. Learning analytics and AI platforms alongside online assessments generate massive volumes of student information through their operations. Although student data collection leads to better instruction and personalized learning experiences it simultaneously creates ethical and legal dilemmas regarding consent, surveillance, and potential misuse. Educational institutions often lack proper infrastructure and clear policies to protect sensitive student information while students remain unaware of how their data gets collected and used (Regan & Jesse, 2019). The expansion of digital learning makes it essential to establish transparent and secure data management practices.

The practical application of technology in education faces challenges due to both technological reliability concerns and user fatigue from platform use. System outages that occur regularly alongside compatibility problems and user interfaces that confuse people create barriers to teaching and learning. The extended use of screens leads to cognitive overload or fatigue among students and educators which results in diminished engagement and learning outcomes (Barrett, 2021). The identified problems demonstrate why we need strong infrastructure and intuitive platforms to enhance instead of hinder education.

Digital learning technologies hold transformative potential but require careful management of numerous challenges to achieve equitable and ethical implementation that works effectively for all users. To achieve digital education's full potential we must bridge the digital divide while investing in teacher development and safeguarding data privacy alongside designing technologies centered on user needs. A joint effort from policymakers, educators and technology providers is necessary to overcome existing limitations and make digital innovation beneficial for every learner.

Table 3 Comparative of Challenges and Limitations of Digital Learning Technologies

Challenge	Description	Implications
Digital Divide and Inequality of Access	Limited access to devices and the internet, especially among marginalized and low-income students.	Widened educational inequality and exclusion.
Teacher Preparedness and Professional Development	Educators often lack adequate training in using technology effectively in pedagogy.	Suboptimal use of digital tools; reduced learning outcomes.
Pedagogical Integration	Technology is used at surface level; often lacks alignment with deeper instructional goals.	Missed opportunities for deep learning and transformation.
Data Privacy and Student Monitoring	Concerns over student data collection, consent, privacy, and institutional safeguards.	Potential legal and ethical risks; loss of student trust.
Technological Reliability and Platform Fatigue	System glitches, screen fatigue, and usability issues reduce engagement and effectiveness.	Disruption of learning flow; decreased motivation and satisfaction.

5. Future Trends and Innovations

Technology-driven innovations are now steering educational development towards transformative teaching and learning methods. Artificial intelligence (AI) and adaptive learning systems rank among the most promising developments because they deliver unique learning experiences tailored to each individual. Learning systems employ algorithms to modify educational content and difficulty levels and control the learning pace according to each student's performance while delivering instant feedback and individualized assistance. AI-powered platforms such as Carnegie Learning and Knewton provide educators with tools to

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

analyze student responses continuously which enables them to identify knowledge gaps and adapt instructional methods accordingly (Holmes et al., 2019). Customization at this depth significantly improves educational effectiveness while increasing student engagement for learners who demonstrate varying abilities and learning rates.

VR and AR immersive environments alongside personalization and gamification are emerging as powerful tools for education. Learning experiences become more motivating and effective when they incorporate game features such as points and badges along with leaderboards. VR/AR technologies enable students to experience simulations that turn abstract ideas into tangible experiences. Medical students gain practical surgical experience through VR-based simulations in safe conditions while AR technology adds historical context to real-world landmarks during interactive history lessons according to Radianti et al., 2020. These tools function to increase engagement while supporting experiential learning together with kinesthetic and spatial learning modes.

The educational sector has seen the emergence of predictive analytics as a new innovative trend. Predictive analytics requires gathering extensive student data sets followed by analysis to predict future academic performance and guide decision-making processes. Educational institutions can prevent student academic failure by analyzing attendance records alongside assignment completion and assessment scores to detect at-risk students ahead of time (Ifenthaler & Yau, 2020). Through these insights administrators can optimize curriculum development and resource allocation while enhancing institutional performance.

The latest technological advancements present vast opportunities to promote instruction that is both data-driven and focused on student needs. AI systems help teachers through grading automation and class performance analysis while simultaneously supporting student learning. Predictive tools streamline educational paths while VR/AR environments enhance student creativity and critical thinking skills. These technologies operate as an integrated system that delivers adaptive and engaging instruction which meets both educational goals and the needs of learners (Luckin et al., 2016).

The process of applying these new technologies faces multiple obstacles. To prevent technological advancements from increasing educational inequalities existing challenges must be tackled including ethical data use digital equity and the scalability of advanced tools. To successfully adopt emerging educational technologies into teaching methods

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

educators need proper training along with institutional support. Responsible innovation needs a collaborative effort between educators, policymakers, technologists, and researchers according to Williamson & Eynon (2020).

Upcoming digital learning trends driven by artificial intelligence, gamified experiences, immersive environments and predictive analytics will transform educational delivery and learning experiences. The new technological advancements will enable educational experiences to become more customized for students and create more interactive and successful learning outcomes. These innovations will build inclusive and future-ready educational systems if they receive careful implementation and ethical oversight.

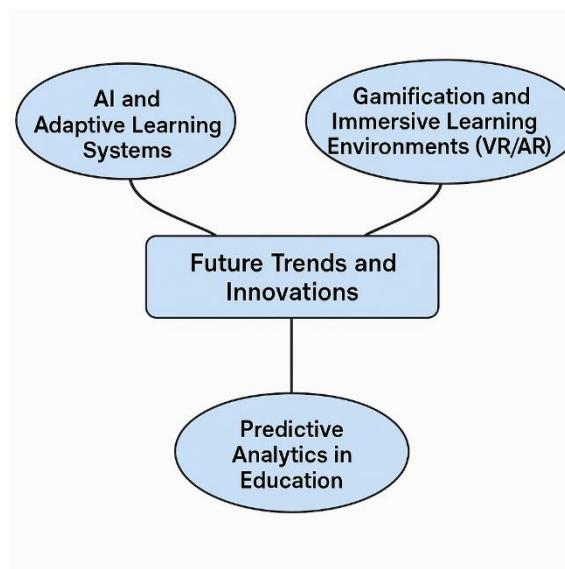


Figure 6 Future Trends and Innovations

Conclusion

Education has experienced a significant metamorphosis with the rapid evolution of digital learning technologies. The historical development, practical implementations, and theoretical foundations discussed below provide evidence of this transformation. As education technology advanced from computer-assisted instruction to essential tools with today's AI platforms and immersive learning experiences, it has become more integral than ever to instructional practices. With the introduction of Learning Management Systems (LMS) and adaptive learning tools like VR/AR experiences and predictive analytics, the classroom

has transformed from being teacher-centric to learner-centric dynamic learning environments.

The value of digital learning technologies has been proven throughout this evolution by enabling personalized learning, expanding access and equity, and enhancing students' critical thinking and problem-solving skills. Adaptive learning, interactive engagement, and real-time feedback, combined with customized pacing, lead to improved learning outcomes, and provide students with a fair chance to succeed. However, the journey toward digitalization has encountered challenges, which serve as counterpoints to this integration of technology in education. Digital equity issues, the digital divide, a lack of teacher readiness, and ethical concerns around data privacy and surveillance are major obstacles that need to be addressed if technology is to enhance equity in education rather than becoming an impediment.

Today, digital tools have become strategic components in contemporary educational practices, shaping curriculum development, pedagogical delivery, and student support systems. The rapid digitization of societies has made the adoption of educational technology no longer optional but necessary to prepare students for success in an information-rich world. As such, educators and institutions must shift their view on technology to centralize it in pedagogical strategies.

A balanced, equitable, and future-looking approach is vital when putting digital tools into practice in education. For a sustainable integration to be successful, infrastructure projects, professional development programs, and ethical frameworks need to be funded by policymakers. Researchers and practitioners must also collaborate to evaluate new edtech tools and pedagogies to ensure that all developments rest on the foundation of sound teaching principles and the principles of equity. Digital education thrives on both technology advancement and a cautious equitable implementation to succeed for all learners.

New Knowledge

The synthesis of results leads to a structured presentation that reveals new concepts discovered through research on digital learning technologies and their transformative effects on modern teaching approaches.

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

1. Digital Pedagogical Transformation

The main pedagogical innovation discovered is the shift from traditional teacher-led instruction to a dynamic learning approach where students are at the center. This includes:

Educators must perceive digital tools such as LMS, AI, VR/AR as instructional design partners rather than mere content delivery systems.

Digital interactivity serves as the backbone for experiential learning methods that incorporate constructivist approaches and inquiry-based activities.

2. Theoretical Convergence for Effective Integration

The research utilizes a dual framework approach which combines SAMR with TPACK to serve as complementary analytical tools.

The SAMR framework allows educators to assess technology integration levels ranging from substitution through to redefinition.

- TPACK emphasizes knowledge convergence (technological, pedagogical, content).

The combined approach provides a complete framework for creating plans and evaluating how educational technology is utilized.

3. Learner-Centric Personalization through AI

Personalization has been enhanced through innovative approaches that extend its traditional boundaries.

AI-driven platforms deliver personalized content while simultaneously predicting learning paths and providing real-time remediation solutions.

Adaptive learning environments can be created which dynamically respond to students' varying needs including their pace, learning style, and skill proficiency.

4. Equity-Centered Digital Inclusion

The research enlarges the digital equity dialogue by incorporating an inclusivity design framework.

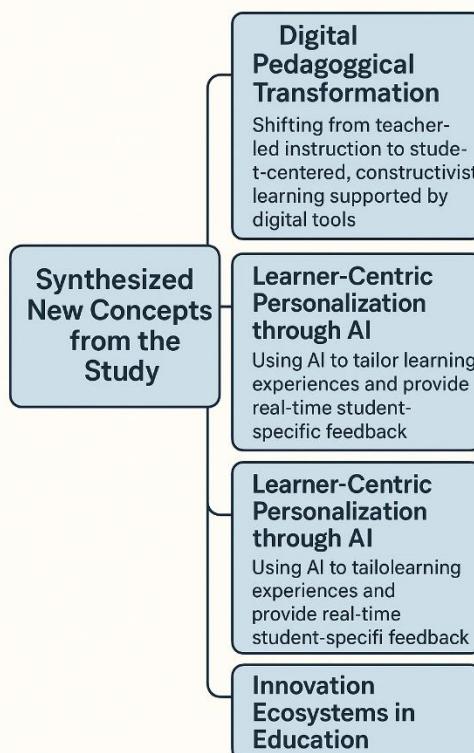
The implementation of technologies should follow UDL principles to ensure universal access for all users.

The focus is on developing infrastructure components alongside accessibility tools and language-specific content to close digital gaps.

5. Technological-Pedagogical Accountability

The research introduces a novel approach to accountability within digital adoption processes.

Educational institutions need to implement technology solutions while validating their educational benefits and overseeing both ethical data practices and student welfare.


The situation demands regular institutional technology evaluations along with ethical governance systems.

6. Innovation Ecosystems in Education

The wider ecosystemic perspective serves as the context for understanding future educational trends.

Digital learning tools such as AI, VR, and analytics must operate in a coordinated manner to maintain instructional coherence and prevent fragmentation in assessment and learner support.

Modern educational innovations develop as complete learning ecosystems rather than stand-alone applications.

Figure 7 Digital Learning Technologies in Shaping and Transforming Modern Teaching Approaches

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.
<https://doi.org/10.65205/jlgisru.2025.289014>

Research Suggestions

1. Policy Recommendations

1.1 Invest in Digital Infrastructure: To bridge the digital divide and enable complete student access to digital learning resources governments and educational authorities must invest in equitable technology access including devices and high-speed internet particularly in rural and underserved regions.

1.2 Develop Ethical Guidelines and Data Protection Policies: The creation and enforcement of strong data privacy frameworks by policymakers remain essential to protect student data in response to the growing amount of personal information collected by AI systems and learning platforms.

1.3 Support Sustainable Innovation: Public-private partnerships and national strategies should drive long-term investments in educational technology innovations to meet 21st-century learning objectives.

2. Practice Recommendations

2.1 Enhance Teacher Training and Professional Development: Educational institutions need to deliver ongoing practical training on teaching models like SAMR and TPACK that teaches educators how to combine digital tools into classroom activities through meaningful pedagogical application rather than just technical usage.

2.2 Foster Inclusive and Student-Centered Instruction: Educators need support to implement digital tool-based teaching strategies that enable personalized learning and collaborative experiences while engaging all students including those with special needs.

2.3 Implement Blended and Flipped Learning Models: Educational institutions ought to combine blended and flipped classroom methods to improve both physical and virtual learning spaces while enhancing student control and scheduling flexibility.

3. Further Research Recommendations

3.1 Investigate Long-Term Impacts of AI and Predictive Analytics: Subsequent research must assess the long-term influence of AI tools on educational outcomes, teaching roles and curriculum changes with special focus on varied socio-economic settings.

3.2 Examine Equity and Accessibility in Digital Education: Research should explore methods for designing digital learning technologies to enable authentic inclusivity for student groups with diverse cultural backgrounds, multiple languages, and varying abilities.

Citation : Wattanapanit, N. (2568). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. วารสารการบริหารการปกครองและนวัตกรรมท้องถิ่น, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisrru.2025.289014>

3.3 Evaluate Teacher Preparedness Models: Research is required to develop effective teacher training models that integrate digital skills with instructional design principles for low-resource or rapidly changing educational environments.

เอกสารอ้างอิง (References)

Al-Azawei, A., Serenelli, F., & Lundqvist, K. (2016). Universal design for learning (UDL): A content analysis of peer-reviewed journal papers from 2012 to 2015. *Journal of the Scholarship of Teaching and Learning*, 17(3), 67–84.
<https://doi.org/10.14434/josotl.v17i3.22102>

Anderson, T. (2008). Towards a theory of online learning. In T. Anderson & F. Elloumi (Eds.), *The theory and practice of online learning* (2nd ed., pp. 33–60). Athabasca University Press.

Barrett, M. (2021). Digital fatigue and the online learning experience: A survey of student perspectives. *Journal of Educational Technology Systems*, 50(1), 39–60.
<https://doi.org/10.1177/00472395211032839>

Bates, A. W. T. (2019). *Teaching in a digital age: Guidelines for designing teaching and learning* (2nd ed.). BCcampus.

Bishop, J. L., & Verleger, M. A. (2013). The flipped classroom: A survey of the research. In *ASEE National Conference Proceedings*. Atlanta, GA.

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. *Educational Assessment, Evaluation and Accountability*, 21(1), 5–31.
<https://doi.org/10.1007/s11092-008-9068-5>

Bond, M., Bedenlier, S., Marín, V. I., & Händel, M. (2021). Emergency remote teaching in higher education: Mapping the first global online semester. *International Journal of Educational Technology in Higher Education*, 18, Article 50.
<https://doi.org/10.1186/s41239-021-00282-x>

Chou, C., & Block, L. (2012). The impact of technology on student learning. *Education and Culture*, 28(2), 112–123.

Coates, H., James, R., & Baldwin, G. (2005). A critical examination of the role of LMSs in higher education. *Educational Technology & Society*, 8(1), 69–83.

Crompton, H. (2013). A historical overview of mobile learning: Toward learner-centered education. In Z. L. Berge & L. Y. Muilenburg (Eds.), *Handbook of mobile learning* (pp. 3–14). Routledge.

Cuban, L. (2001). *Oversold and underused: Computers in the classroom*. Harvard University Press.

Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: How knowledge, confidence, beliefs, and culture intersect. *Journal of Research on Technology in Education*, 42(3), 255–284.
<https://doi.org/10.1080/15391523.2010.10782551>

Graham, C. R. (2013). Emerging practice and research in blended learning. In M. G. Moore (Ed.), *Handbook of distance education* (3rd ed., pp. 333–350). Routledge.

Hamilton, E. R., Rosenberg, J. M., & Akcaoglu, M. (2016). The substitution augmentation modification redefinition (SAMR) model: A critical review and suggestions for its use. *TechTrends*, 60(5), 433–441. <https://doi.org/10.1007/s11528-016-0091-y>

Holmes, W., Bialik, M., & Fadel, C. (2019). *Artificial intelligence in education: Promises and implications for teaching and learning*. Center for Curriculum Redesign.

Horn, M. B., & Staker, H. (2015). *Blended: Using disruptive innovation to improve schools*. Jossey-Bass.

Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising predictive learning analytics to support students' self-regulated learning in higher education. *Educational Technology Research and Development*, 68(6), 3151–3170. <https://doi.org/10.1007/s11423-020-09728-4>

Johnson, L., Becker, S. A., Cummins, M., Estrada, V., Freeman, A., & Hall, C. (2016). *NMC Horizon Report: 2016 higher education edition*. The New Media Consortium.

Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: What is “enhanced” and how do we know? A critical literature review. *Learning, Media and Technology*, 39(1), 6–36.
<https://doi.org/10.1080/17439884.2013.770404>

Laurillard, D. (2012). *Teaching as a design science: Building pedagogical patterns for learning and technology*. Routledge.

Luckin, R., & Holmes, W. (2016). *Intelligence unleashed: An argument for AI in education*. Pearson Education.

Means, B., Toyama, Y., Murphy, R., Bakia, M., & Jones, K. (2010). *Evaluation of evidence-based practices in online learning: A meta-analysis and review of online learning studies*. U.S. Department of Education.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers College Record*, 108(6), 1017–1054.

Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S. (2015). *Continued progress: Promising evidence on personalized learning*. RAND Corporation.
https://www.rand.org/pubs/research_reports/RR1365.html

Puentedura, R. R. (2014). *SAMR and TPCK: Intro to advanced practice*.
<http://www.hippasus.com/rrpweblog/>

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education. *Computers & Education*, 147, 103778. <https://doi.org/10.1016/j.compedu.2019.103778>

Redecker, C. (2017). *European framework for the digital competence of educators: DigCompEdu*. Publications Office of the European Union.

Regan, P. M., & Jesse, J. (2019). Ethical challenges of edtech, big data and personalized learning. *Ethics and Information Technology*, 21(3), 167–179.
<https://doi.org/10.1007/s10676-019-09519-1>

Scardamalia, M., & Bereiter, C. (2014). Smart technology for self-organizing processes. In R. K. Sawyer (Ed.), *The Cambridge handbook of the learning sciences* (2nd ed., pp. 803–828). Cambridge University Press.

Selwyn, N. (2012). *Education and technology: Key issues and debates*. Bloomsbury Publishing.


Trilling, B., & Fadel, C. (2009). *21st century skills: Learning for life in our times*. Jossey-Bass.

Trust, T., & Whalen, J. (2020). Should teachers be trained in emergency remote teaching? *Journal of Technology and Teacher Education*, 28(2), 189–199.

U.S. Department of Education. (2017). *Reimagining the role of technology in education: 2017 National Education Technology Plan update*. <https://tech.ed.gov/netp/>

van Dijk, J. A. G. M. (2020). *The digital divide*. Polity Press.

Citation : Wattanapanit, N. (2025). The Key Role of Digital Learning Technologies in Shaping and Transforming Modern

Teaching Approaches. *Journal of Local Governance and Innovation*, 9(3), 367 - 396.

<https://doi.org/10.65205/jlgisru.2025.289014>

Voogt, J., Erstad, O., Dede, C., & Mishra, P. (2013). Challenges to learning and schooling in the digital networked world of the 21st century. *Journal of Computer Assisted Learning*, 29(5), 403–413. <https://doi.org/10.1111/jcal.12137>

Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. *Learning, Media and Technology*, 45(3), 223–235. <https://doi.org/10.1080/17439884.2020.1798995>

Woolley, D. R. (2016). PLATO: The emergence of online community. In J. Malloy (Ed.), *Social media archaeology and poetics*. MIT Press.

World Economic Forum. (2020). *The future of jobs report 2020*. <https://www.weforum.org/reports/the-future-of-jobs-report-2020>

Yuan, L., & Powell, S. (2013). *MOOCs and open education: Implications for higher education*. JISC CETIS. <https://www.jisc.ac.uk/reports/moocs-and-open-education>